login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A373431
Triangle read by rows: Coefficients of the polynomials N(n, x) * EZ(n, x), where N denote the Narayana polynomials A131198 and EZ the Eulerian zig-zag polynomials A205497.
2
1, 1, 1, 1, 1, 4, 4, 1, 1, 9, 25, 25, 9, 1, 1, 17, 97, 221, 221, 97, 17, 1, 1, 29, 291, 1229, 2476, 2476, 1229, 291, 29, 1, 1, 47, 760, 5303, 18415, 33818, 33818, 18415, 5303, 760, 47, 1, 1, 74, 1818, 19481, 106272, 317902, 544727, 544727, 317902, 106272, 19481, 1818, 74, 1
OFFSET
0,6
COMMENTS
There are various conventions for indexing the Narayana, the Eulerian numbers and the zig-zag Eulerian numbers. The one we use here requires that all corresponding polynomials have p(n, 0) = 1.
EXAMPLE
Triangle starts:
[0] 1;
[1] 1;
[2] 1, 1;
[3] 1, 4, 4, 1;
[4] 1, 9, 25, 25, 9, 1;
[5] 1, 17, 97, 221, 221, 97, 17, 1;
[6] 1, 29, 291, 1229, 2476, 2476, 1229, 291, 29, 1;
MAPLE
R := proc(n) option remember; local F; if n = 0 then 1/(1 - q*x) else F := R(n-1);
simplify(p/(p - q)*(subs({p = q, q = p}, F) - subs(p = q, F))) fi end:
EZ := (n, x) -> ifelse(n < 3, 1, expand(simplify(subs({p = 1, q = 1}, R(n))*(1 - x)^(n + 1)) / x^2)):
nc := (n, k) -> `if`(n = 0, 0^n, binomial(n, k)^2*(n-k)/(n*(k+1))):
N := (n, x) -> local k; simplify(add(nc(n, k)*x^k, k = 0..n)):
NEZ := (n, x) -> expand(EZ(n, x) * N(n, x)):
Trow := n -> local k; if n < 2 then 1 elif n = 2 then 1, 1
else seq(coeff(NEZ(n, x), x, k), k = 0..2*n-3) fi: seq(print(Trow(n)), n = 0..6);
CROSSREFS
Cf. A131198 (Narayana), A205497 (Eulerian zig-zag), A373430 (row sums).
Sequence in context: A172347 A375863 A108428 * A174126 A075613 A221837
KEYWORD
nonn,tabf
AUTHOR
Peter Luschny, Jun 05 2024
STATUS
approved