OFFSET
1,2
COMMENTS
Let s=(1,2,3,5,8,13,...)=(F(k+1)), where F=A000045, and let T be the infinite square matrix whose n-th row is formed by putting n-1 zeros before the terms of s. Let T' be the transpose of T. Then A202874 represents the matrix product M=T'*T. M is the self-fusion matrix of s, as defined at A193722. See A202875 for characteristic polynomials of principal submatrices of M, with interlacing zeros.
EXAMPLE
Northwest corner:
1....2....3....5....8....13
2....5....8....13...21...34
3....8....14...23...37...60
5....13...23...39...63...102
8....21...37...63...102..167
MATHEMATICA
s[k_] := Fibonacci[k + 1];
U = NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[Table[s[k], {k, 1, 15}]];
L = Transpose[U]; M = L.U; TableForm[M]
m[i_, j_] := M[[i]][[j]];
Flatten[Table[m[i, n + 1 - i], {n, 1, 12}, {i, 1, n}]]
f[n_] := Sum[m[i, n], {i, 1, n}] + Sum[m[n, j], {j, 1, n - 1}]
Table[f[n], {n, 1, 12}]
Table[Sqrt[f[n]], {n, 1, 12}] (* A001911 *)
Table[m[1, j], {j, 1, 12}] (* A000045 *)
Table[m[j, j], {j, 1, 12}] (* A119996 *)
Table[m[j, j + 1], {j, 1, 12}] (* A180664 *)
Table[Sum[m[i, n + 1 - i], {i, 1, n}], {n, 1, 12}] (* A002940 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Dec 26 2011
STATUS
approved