login
A202874
Symmetric matrix based on (1,2,3,5,8,13,...), by antidiagonals.
3
1, 2, 2, 3, 5, 3, 5, 8, 8, 5, 8, 13, 14, 13, 8, 13, 21, 23, 23, 21, 13, 21, 34, 37, 39, 37, 34, 21, 34, 55, 60, 63, 63, 60, 55, 34, 55, 89, 97, 102, 103, 102, 97, 89, 55, 89, 144, 157, 165, 167, 167, 165, 157, 144, 89, 144, 233, 254, 267, 270, 272, 270, 267, 254
OFFSET
1,2
COMMENTS
Let s=(1,2,3,5,8,13,...)=(F(k+1)), where F=A000045, and let T be the infinite square matrix whose n-th row is formed by putting n-1 zeros before the terms of s. Let T' be the transpose of T. Then A202874 represents the matrix product M=T'*T. M is the self-fusion matrix of s, as defined at A193722. See A202875 for characteristic polynomials of principal submatrices of M, with interlacing zeros.
EXAMPLE
Northwest corner:
1....2....3....5....8....13
2....5....8....13...21...34
3....8....14...23...37...60
5....13...23...39...63...102
8....21...37...63...102..167
MATHEMATICA
s[k_] := Fibonacci[k + 1];
U = NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[Table[s[k], {k, 1, 15}]];
L = Transpose[U]; M = L.U; TableForm[M]
m[i_, j_] := M[[i]][[j]];
Flatten[Table[m[i, n + 1 - i], {n, 1, 12}, {i, 1, n}]]
f[n_] := Sum[m[i, n], {i, 1, n}] + Sum[m[n, j], {j, 1, n - 1}]
Table[f[n], {n, 1, 12}]
Table[Sqrt[f[n]], {n, 1, 12}] (* A001911 *)
Table[m[1, j], {j, 1, 12}] (* A000045 *)
Table[m[j, j], {j, 1, 12}] (* A119996 *)
Table[m[j, j + 1], {j, 1, 12}] (* A180664 *)
Table[Sum[m[i, n + 1 - i], {i, 1, n}], {n, 1, 12}] (* A002940 *)
CROSSREFS
Cf. A202875.
Sequence in context: A316311 A317266 A067330 * A355197 A199512 A303969
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Dec 26 2011
STATUS
approved