login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A316311
T(n,k)=Number of nXk 0..1 arrays with every element unequal to 0, 1, 3, 4, 6 or 8 king-move adjacent elements, with upper left element zero.
7
1, 2, 2, 3, 5, 3, 5, 7, 7, 5, 8, 17, 10, 17, 8, 13, 35, 21, 21, 35, 13, 21, 61, 44, 74, 44, 61, 21, 34, 127, 83, 148, 148, 83, 127, 34, 55, 265, 168, 404, 662, 404, 168, 265, 55, 89, 507, 365, 1046, 1488, 1488, 1046, 365, 507, 89, 144, 1013, 766, 3023, 4583, 4431, 4583
OFFSET
1,2
COMMENTS
Table starts
..1...2...3....5.....8.....13......21.......34........55.........89.........144
..2...5...7...17....35.....61.....127......265.......507.......1013........2071
..3...7..10...21....44.....83.....168......365.......766.......1615........3490
..5..17..21...74...148....404....1046.....3023......8295......24149.......72052
..8..35..44..148...662...1488....4583....18558.....56204.....188141......712440
.13..61..83..404..1488...4431...17487....75221....293206....1262596.....5656690
.21.127.168.1046..4583..17487...96175...534083...2689151...15357780....89959730
.34.265.365.3023.18558..75221..534083..3854852..23640130..172324121..1280488352
.55.507.766.8295.56204.293206.2689151.23640130.190235425.1767871577.16603983388
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2)
k=2: a(n) = 2*a(n-1) -a(n-2) +4*a(n-3) -4*a(n-4) for n>5
k=3: [order 16]
k=4: [order 67] for n>68
EXAMPLE
Some solutions for n=5 k=4
..0..0..0..0. .0..0..0..0. .0..0..0..1. .0..0..0..0. .0..0..0..1
..0..0..0..1. .0..0..0..0. .0..0..0..0. .0..1..0..0. .0..0..1..1
..0..1..0..1. .0..0..0..0. .1..0..0..0. .0..0..0..0. .0..1..1..1
..0..0..0..1. .0..0..0..0. .1..0..1..0. .0..0..0..0. .1..1..1..1
..0..0..0..0. .1..0..0..1. .0..0..1..1. .0..0..0..0. .1..1..1..1
CROSSREFS
Column 1 is A000045(n+1).
Column 2 is A303802.
Sequence in context: A305482 A305252 A316552 * A317266 A067330 A202874
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Jun 29 2018
STATUS
approved