login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A174342
Denominator of ( A164555(n)/A027642(n) + 1/(n+1) ).
3
1, 1, 2, 4, 6, 6, 6, 8, 90, 10, 6, 12, 210, 14, 30, 16, 30, 18, 42, 20, 770, 22, 6, 24, 13650, 26, 54, 28, 30, 30, 462, 32, 5610, 34, 210, 36, 51870, 38, 26, 40, 330, 42, 42, 44, 2070, 46, 6, 48, 324870, 50, 1122, 52, 30, 54, 43890, 56, 5510, 58, 6, 60, 930930
OFFSET
0,3
COMMENTS
The sequence A174341(n)/a(n) = 2, 1, 1/2, 1/4, 1/6, 1/6, 1/6, ... becomes 2, -1, 1/2, -1/4, 1/6,.. under inverse binomial transform: an autosequence, where each second term flips the sign.
PROG
(PARI)
B(n)=if(n!=1, bernfrac(n), -bernfrac(n));
a(n)=denominator(B(n) + 1/(n + 1));
for(n=0, 60, print1(a(n), ", ")) \\ Indranil Ghosh, Jun 19 2017
(Python)
from sympy import bernoulli, Rational
def B(n):
return bernoulli(n) if n != 1 else -bernoulli(n)
def a(n):
return (B(n) + Rational(1, n + 1)).as_numer_denom()[1]
[a(n) for n in range(61)] # Indranil Ghosh, Jun 19 2017
CROSSREFS
Cf. A174341 (numerators).
Sequence in context: A209863 A207540 A050825 * A111150 A166983 A361689
KEYWORD
nonn,frac
AUTHOR
Paul Curtz, Mar 16 2010
STATUS
approved