login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A174341
a(n) = numerator(Bernoulli(n, 1) + 1/(n+1)).
7
2, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, -37, 1, 37, 1, -211, 1, 2311, 1, -407389, 1, 37153, 1, -1181819909, 1, 76977929, 1, -818946931, 1, 277930363757, 1, -84802531453217, 1, 90219075042851, 1, -711223555487930419, 1, 12696640293313423, 1, -6367871182840222481, 1, 35351107998094669831, 1, -83499808737903072705023, 1, 12690449182849194963361, 1
OFFSET
0,1
COMMENTS
a(n) is numerator of (A164555(n)/A027642(n) + 1/(n+1)).
1/(n+1) and Bernoulli(n,1) are autosequences in the sense that they remain the same (up to sign) under inverse binomial transform. This feature is kept for their sum, a(n)/A174342(n) = 2, 1, 1/2, 1/4, 1/6, 1/6, 1/6, 1/8, 7/90, 1/10, ...
Similar autosequences are also A000045, A001045, A113405, A000975 preceded by two zeros, and A140096.
Conjecture: the numerator of (A164555(n)/(n+1) + A027642(n)/(n+1)^2) is a(n) and the denominator of this fraction is equal to 1 if and only if n+1 is prime or 1. Cf. A309132. - Thomas Ordowski, Jul 09 2019
The "if" part of the conjecture is true: see the theorems in A309132 and A326690. The values of the numerator when n+1 is prime are A327033. - Jonathan Sondow, Aug 15 2019
LINKS
OEIS Wiki, Autosequence
MAPLE
B := proc(n) if n <> 1 then bernoulli(n) ; else -bernoulli(n) ; end if; end proc:
A174341 := proc(n) B(n)+1/(n+1) ; numer(%) ; end proc: # R. J. Mathar, Nov 19 2010
MATHEMATICA
a[n_] := Numerator[BernoulliB[n, 1] + 1/(n + 1)];
Table[a[n], {n, 0, 47}] (* Peter Luschny, Jul 13 2019 *)
PROG
(PARI)
B(n)=if(n!=1, bernfrac(n), -bernfrac(n));
a(n)=numerator(B(n) + 1/(n + 1));
for(n=0, 50, print1(a(n), ", ")) \\ Indranil Ghosh, Jun 19 2017
(Python)
from sympy import bernoulli, Integer
def B(n): return bernoulli(n) if n != 1 else -bernoulli(n)
def a(n): return (B(n) + 1/Integer(n + 1)).numerator() # Indranil Ghosh, Jun 19 2017
(Magma) [2, 1] cat [Numerator(Bernoulli(n)+1/(n+1)): n in [2..40]]; // Vincenzo Librandi, Jul 18 2019
CROSSREFS
KEYWORD
sign,frac
AUTHOR
Paul Curtz, Mar 16 2010
EXTENSIONS
Reformulation of the name by Peter Luschny, Jul 13 2019
STATUS
approved