login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A294335
Number of compositions (ordered partitions) of n into cubes dividing n.
0
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1, 64, 1, 1, 2, 1, 1, 1, 1, 345, 1, 1, 1, 1, 1, 1, 1, 1824, 1, 1, 1, 1, 1, 1, 1, 9661, 1, 1, 1, 1, 1, 30, 1, 51284, 1, 1, 1, 1, 1, 1, 1, 272334, 1, 1, 1, 1, 1, 1, 1, 1445995, 1, 1, 1, 1, 1, 1, 1, 7677250, 463, 1, 1, 1, 1
OFFSET
0,9
FORMULA
a(m)=1 when m is cubefree (A004709) and a(m)<>1 when m is not cubefree (A046099). - Michel Marcus, Oct 29 2017
EXAMPLE
a(16) = 11 because 16 has 5 divisors {1, 2, 4, 8, 16} among which 2 are cubes {1, 8} therefore we have [8, 8], [8, 1, 1, 1, 1, 1, 1, 1, 1], [1, 8, 1, 1, 1, 1, 1, 1, 1], [1, 1, 8, 1, 1, 1, 1, 1, 1], [1, 1, 1, 8, 1, 1, 1, 1, 1], [1, 1, 1, 1, 8, 1, 1, 1, 1], [1, 1, 1, 1, 1, 8, 1, 1, 1], [1, 1, 1, 1, 1, 1, 8, 1, 1], [1, 1, 1, 1, 1, 1, 1, 8, 1], [1, 1, 1, 1, 1, 1, 1, 1, 8] and [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1].
MATHEMATICA
Table[SeriesCoefficient[1/(1 - Sum[Boole[Mod[n, k] == 0 && IntegerQ[k^(1/3)]] x^k, {k, 1, n}]), {x, 0, n}], {n, 0, 85}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Oct 28 2017
STATUS
approved