login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A158854
Triangle T(n,k) read by rows: coefficient [x^k] of the polynomial (1-x)^(1+floor(n/2))* (1+x)^floor((n-1)/2) in row n, column k.
3
1, 1, -1, 1, -2, 1, 1, -1, -1, 1, 1, -2, 0, 2, -1, 1, -1, -2, 2, 1, -1, 1, -2, -1, 4, -1, -2, 1, 1, -1, -3, 3, 3, -3, -1, 1, 1, -2, -2, 6, 0, -6, 2, 2, -1, 1, -1, -4, 4, 6, -6, -4, 4, 1, -1, 1, -2, -3, 8, 2, -12, 2, 8, -3, -2, 1
OFFSET
0,5
COMMENTS
Row sums are zero except for n=0.
FORMULA
T(n,k) = T(n-2,k) - T(n-2,k-2), T(0,0) = T(1,0) = T(2,0) = T(2,2) = 1, T(1,1)=-1, T(2,1)=-2, T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Oct 25 2013
EXAMPLE
1;
1, -1;
1, -2, 1;
1, -1, -1, 1;
1, -2, 0, 2, -1;
1, -1, -2, 2, 1, -1;
1, -2, -1, 4, -1, -2, 1;
1, -1, -3, 3, 3, -3, -1, 1;
1, -2, -2, 6, 0, -6, 2, 2, -1;
1, -1, -4, 4, 6, -6, -4, 4, 1, -1;
1, -2, -3, 8, 2, -12, 2, 8, -3, -2, 1;
MAPLE
A158854 := proc(n, k)
(1-x)^(1+floor(n/2))*(1+x)^floor((n-1)/2) ;
coeftayl(%, x=0, k) ;
end proc: # R. J. Mathar, Apr 08 2013
MATHEMATICA
Clear[p, x, n, m, a];
p[x_, n_] = If[n == 0, 1, (1 - x)^(Floor[(n)/ 2] + 1)(1 + x)^(Floor[(n - 1)/2])];
Table[ExpandAll[p[x, n]], {n, 0, 10}];
Table[CoefficientList[ExpandAll[p[x, n]], x], {n, 0, 10}];
Flatten[%]
CROSSREFS
Sequence in context: A294335 A194321 A194852 * A376632 A373082 A119849
KEYWORD
sign,tabl,easy
AUTHOR
Roger L. Bagula, Mar 28 2009
STATUS
approved