login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A158851
a(n) = lcm(1,2,3,...,n) mod (n+1).
2
1, 2, 2, 2, 0, 4, 4, 3, 0, 1, 0, 4, 0, 0, 8, 5, 0, 14, 0, 0, 0, 15, 0, 5, 0, 18, 0, 1, 0, 20, 16, 0, 0, 0, 0, 2, 0, 0, 0, 15, 0, 15, 0, 0, 0, 8, 0, 21, 0, 0, 0, 29, 0, 0, 0, 0, 0, 21, 0, 16, 0, 0, 32, 0, 0, 29, 0, 0, 0, 23, 0, 22, 0, 0, 0, 0, 0, 30, 0, 54, 0, 71, 0, 0, 0, 0, 0, 37, 0, 0, 0, 0, 0, 0, 0, 7, 0
OFFSET
1,2
COMMENTS
If n+1 is not a power of a prime, then a(n) = 0.
If n+1 = p^m, p = prime, then p^(m-1) (= (n+1)/p) divides a(n), but p^m (= n+1) does not divide a(n).
LINKS
FORMULA
a(2^n-1) = 2^(n-1). - Thomas Ordowski, Sep 18 2018
EXAMPLE
a(6) = lcm(1,2,3,4,5,6) mod (6+1) = 60 mod 7 = 4.
MAPLE
a := proc (n) options operator, arrow: `mod`(lcm(seq(j, j = 1 .. n)), n+1) end proc: seq(a(n), n = 1 .. 100); # Emeric Deutsch, Apr 03 2009
MATHEMATICA
Array[Mod[LCM @@ Range@ #, # + 1] &, 97] (* Michael De Vlieger, Mar 04 2018 *)
PROG
(PARI) a(n) = lcm(vector(n, k, k)) % (n+1); \\ Michel Marcus, Mar 06 2018
(GAP) List([1..100], n->Lcm([1..n]) mod (n+1)); # Muniru A Asiru, Mar 06 2018
(Magma) [Lcm([1..n]) mod (n+1): n in [1..100]]; // Vincenzo Librandi, Mar 07 2018
CROSSREFS
Cf. A003418.
Sequence in context: A155123 A125938 A215461 * A151930 A356907 A084203
KEYWORD
nonn
AUTHOR
Leroy Quet, Mar 28 2009
EXTENSIONS
More terms from Emeric Deutsch, Apr 03 2009
STATUS
approved