login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A151930
First differences of A001316.
2
1, 0, 2, -2, 2, 0, 4, -6, 2, 0, 4, -4, 4, 0, 8, -14, 2, 0, 4, -4, 4, 0, 8, -12, 4, 0, 8, -8, 8, 0, 16, -30, 2, 0, 4, -4, 4, 0, 8, -12, 4, 0, 8, -8, 8, 0, 16, -28, 4, 0, 8, -8, 8, 0, 16, -24, 8, 0, 16, -16, 16, 0, 32, -62, 2, 0, 4, -4, 4, 0, 8, -12, 4, 0, 8, -8, 8, 0, 16, -28, 4, 0, 8, -8, 8, 0, 16, -24, 8, 0, 16, -16, 16, 0, 32
OFFSET
0,3
COMMENTS
Net increase in number of ON cells at generation n of 1-D CA using Rule 90.
FORMULA
a((2*n+1)*2^p-1) = (2-2^p) * A001316(n), p >= 0 and n >=0. - Johannes W. Meijer, Jan 25 2013
G.f.: -1/x + ((1 - x)/x)*Product_{k>=0} (1 + 2*x^(2^k)). - Ilya Gutkovskiy, Feb 28 2017
MAPLE
nmax := 94: A001316 := n -> if n<=-1 then 0 else 2^add(i, i=convert(n, base, 2)) fi: for p from 0 to ceil(log[2](nmax))+1 do for n from 0 to nmax/(p+2)+1 do a((2*n+1)*2^p-1) := (2-2^p) * A001316(n) od: od: seq(a(n), n=0..nmax); # Johannes W. Meijer, Jan 25 2013
CROSSREFS
Sequence in context: A125938 A215461 A158851 * A356907 A084203 A073358
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Aug 10 2009
STATUS
approved