login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A155123
A finite irregular triangle.
1
1, 2, 2, 2, 0, 4, 4, 0, -4, 8, 12, 0, 8, -32, 8, 48
OFFSET
0,2
FORMULA
T(n, k) = [x^k]( p(n, x) ), where p(0,x) = 1, p(1,x) = 2, p(2,x) = 2*x + 2, p(3,x) = 4*x^2 + 4*x, p(4,x) = 12*x^3 + 8*x^2 - 4*x, and p(5,x) = 48*x^4 + 8*x^3 - 32*x^2 + 8*x.
EXAMPLE
The finite triangle, T(n,k), is:
1;
2;
2, 2;
0, 4, 4;
0, -4, 8, 12;
0, 8, -32, 8, 48;
MATHEMATICA
t = {{1}, {1, 1}, {1, 2*n, 1}, {1, -1 +2*n +2*n^2, -1 +2*n +2*n^2, 1}, {1, -2 +2*n +2*n^2 +2*n^3, 2 -8*n +4*n^2 +8*n^3, -2 +2*n +2*n^2 +2*n^3, 1}, {1, -3 +2*n +2*n^2 +2*n^3 +2*n^4, 2 +2*n -18*n^2 +2*n^3 +22*n^4, 2 +2*n - 18*n^2 +2*n^3 +22*n^4, -3 +2*n +2*n^2 +2*n^3 +2*n^4, 1}};
Table[CoefficientList[Apply[Plus, t[[m]]], n], {m, Length[t]}]//Flatten
CROSSREFS
Sequence in context: A263527 A261444 A000091 * A125938 A215461 A158851
KEYWORD
sign,tabf,fini,full,less
AUTHOR
Roger L. Bagula, Jan 20 2009
EXTENSIONS
Edited by G. C. Greubel, Jun 18 2024
STATUS
approved