login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A finite irregular triangle.
1

%I #17 Jun 19 2024 09:33:21

%S 1,2,2,2,0,4,4,0,-4,8,12,0,8,-32,8,48

%N A finite irregular triangle.

%F T(n, k) = [x^k]( p(n, x) ), where p(0,x) = 1, p(1,x) = 2, p(2,x) = 2*x + 2, p(3,x) = 4*x^2 + 4*x, p(4,x) = 12*x^3 + 8*x^2 - 4*x, and p(5,x) = 48*x^4 + 8*x^3 - 32*x^2 + 8*x.

%e The finite triangle, T(n,k), is:

%e 1;

%e 2;

%e 2, 2;

%e 0, 4, 4;

%e 0, -4, 8, 12;

%e 0, 8, -32, 8, 48;

%t t = {{1}, {1,1}, {1, 2*n, 1}, {1, -1 +2*n +2*n^2, -1 +2*n +2*n^2, 1}, {1, -2 +2*n +2*n^2 +2*n^3, 2 -8*n +4*n^2 +8*n^3, -2 +2*n +2*n^2 +2*n^3, 1}, {1, -3 +2*n +2*n^2 +2*n^3 +2*n^4, 2 +2*n -18*n^2 +2*n^3 +22*n^4, 2 +2*n - 18*n^2 +2*n^3 +22*n^4, -3 +2*n +2*n^2 +2*n^3 +2*n^4, 1}};

%t Table[CoefficientList[Apply[Plus, t[[m]]], n], {m,Length[t]}]//Flatten

%K sign,tabf,fini,full,less

%O 0,2

%A _Roger L. Bagula_, Jan 20 2009

%E Edited by _G. C. Greubel_, Jun 18 2024