login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A155121
a(n) = 2*n*(1 + n + n^2 + n^3) - 3.
2
-3, 5, 57, 237, 677, 1557, 3105, 5597, 9357, 14757, 22217, 32205, 45237, 61877, 82737, 108477, 139805, 177477, 222297, 275117, 336837, 408405, 490817, 585117, 692397, 813797, 950505, 1103757, 1274837, 1465077, 1675857
OFFSET
0,1
FORMULA
a(n) = 2*n*(1 + n + n^2 + n^3) - 3.
G.f.: (3 - 20*x - 2*x^2 - 32*x^3 + 3*x^4)/(x-1)^5.
From Bruno Berselli, Dec 16 2010: (Start)
a(n) = 4*A071237(n) - 3.
a(n) = 2*A024003(n)/(1-n) - 5 (n>1). (End)
E.g.f.: (-3 + 8*x + 22*x^2 + 14*x^3 + 2*x^4)*exp(x). - G. C. Greubel, Mar 25 2021
MAPLE
seq( -3 +2*n +2*n^2 +2*n^3 +2*n^4, n=0..40); # G. C. Greubel, Mar 25 2021
MATHEMATICA
Table[-3 +2n +2n^2 +2n^3 +2n^4, {n, 0, 30}]
PROG
(Magma) [2*n*(1+n+n^2+n^3)-3: n in [0..40] ]; // Vincenzo Librandi, May 23 2011
(Sage) [-3 +2*n +2*n^2 +2*n^3 +2*n^4 for n in (0..40)] # G. C. Greubel, Mar 25 2021
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Roger L. Bagula, Jan 20 2009
STATUS
approved