login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 2*n*(1 + n + n^2 + n^3) - 3.
2

%I #26 Sep 08 2022 08:45:40

%S -3,5,57,237,677,1557,3105,5597,9357,14757,22217,32205,45237,61877,

%T 82737,108477,139805,177477,222297,275117,336837,408405,490817,585117,

%U 692397,813797,950505,1103757,1274837,1465077,1675857

%N a(n) = 2*n*(1 + n + n^2 + n^3) - 3.

%H Vincenzo Librandi, <a href="/A155121/b155121.txt">Table of n, a(n) for n = 0..2000</a>

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1).

%F a(n) = 2*n*(1 + n + n^2 + n^3) - 3.

%F G.f.: (3 - 20*x - 2*x^2 - 32*x^3 + 3*x^4)/(x-1)^5.

%F From _Bruno Berselli_, Dec 16 2010: (Start)

%F a(n) = 4*A071237(n) - 3.

%F a(n) = 2*A024003(n)/(1-n) - 5 (n>1). (End)

%F E.g.f.: (-3 + 8*x + 22*x^2 + 14*x^3 + 2*x^4)*exp(x). - _G. C. Greubel_, Mar 25 2021

%p seq( -3 +2*n +2*n^2 +2*n^3 +2*n^4, n=0..40); # _G. C. Greubel_, Mar 25 2021

%t Table[-3 +2n +2n^2 +2n^3 +2n^4, {n, 0, 30}]

%o (Magma) [2*n*(1+n+n^2+n^3)-3: n in [0..40] ]; // _Vincenzo Librandi_, May 23 2011

%o (Sage) [-3 +2*n +2*n^2 +2*n^3 +2*n^4 for n in (0..40)] # _G. C. Greubel_, Mar 25 2021

%Y Cf. A024003, A071237, A142463, A155120.

%K sign,easy

%O 0,1

%A _Roger L. Bagula_, Jan 20 2009