login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A248923
a(n) is the smallest k >= n such that prime(n)*prime(k) - prime(n+k) is a perfect square.
1
1, 3, 5, 57, 99, 10, 30, 17, 28, 91, 398, 2638, 292, 1383, 69, 1055, 860, 679, 10782, 5440, 1630, 997, 640, 34, 186, 1248, 102, 2039, 1457, 95, 7621, 3980, 273, 4005, 1071, 889, 56, 6309, 4295, 211, 6423, 1004, 2689, 427, 542, 463, 2430, 4815, 223, 277, 70
OFFSET
1,2
COMMENTS
Conjecture: a(n) exists for all n.
The corresponding squares are 1, 4, 36, 1600, 5184, 324, 1764, 1024, 2304, 12996, 81796, 853776, 76176, 481636, 15876, 438244, 386884, 304704, 7518564, 3732624, 992016, 614656, 389376, ...
LINKS
EXAMPLE
a(3)=5 because prime(3)*prime(5) - prime(3+5) = 5*11 - 19 = 6^2.
a(4)=57 because prime(4)*prime(57) - prime(4+57) = 7*269 - 283 = 40^2.
MAPLE
with(numtheory):nn:=70:
for n from 1 to nn do:
pn:=ithprime(n):ii:=0:
for k from n to 10^9 while(ii=0)do:
pk:=ithprime(k):pnk:=ithprime(n+k):c:=pn*pk-pnk:c2:=sqrt(c):
if c2=floor(c2)
then
printf(`%d, `, k):
ii:=1:
else
fi:
od:
od:
MATHEMATICA
Do[k=n; While[!IntegerQ[Sqrt[Prime[k]*Prime[n]-Prime[n+k]]], k++]; Print [n, " ", k], {n, 1, 60}]
PROG
(PARI) a(n) = {k = n; while(! issquare(prime(n)*prime(k) - prime(n+k)), k++); k; } \\ Michel Marcus, Nov 13 2014
CROSSREFS
Sequence in context: A020462 A087602 A086340 * A155121 A106914 A337924
KEYWORD
nonn
AUTHOR
Michel Lagneau, Oct 16 2014
STATUS
approved