login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A248924
Sequence derived from arithmetic relations between powers of phi (A001622): a(n) = phi^n - (-1)^n * (n - phi^-n).
0
2, 2, 1, 7, 3, 16, 12, 36, 39, 85, 113, 210, 310, 534, 829, 1379, 2191, 3588, 5760, 9368, 15107, 24497, 39581, 64102, 103658, 167786, 271417, 439231, 710619, 1149880, 1860468, 3010380, 4870815, 7881229, 12752009, 20633274, 33385246, 54018558, 87403765
OFFSET
0,1
FORMULA
a(n) = phi^n - (-1)^n * (n - phi^-n), phi = (1 + sqrt(5))/2 = A001622.
G.f.: (2*x+1)*(x^2-2)/((x^2+x-1)*(x+1)^2). - Alois P. Heinz, Oct 17 2014
a(n) = A000032(n) - (-1)^n*n. - Alois P. Heinz, Oct 17 2014
EXAMPLE
a(7) = phi^7 + (n - phi^-7) = 36; a(10) = phi^10 - (n - phi^-10) = 113.
MATHEMATICA
LinearRecurrence[{-1, 2, 3, 1}, {2, 2, 1, 7}, 40] (* Harvey P. Dale, Sep 21 2023 *)
PROG
(PARI) a(n)=fibonacci(n-1) + fibonacci(n+1) - n*(-1)^n \\ Charles R Greathouse IV, Oct 28 2014
CROSSREFS
Sequence in context: A108338 A021455 A271460 * A307455 A136502 A144502
KEYWORD
nonn,easy
AUTHOR
Gustavo Mendoza, Oct 16 2014
STATUS
approved