login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sequence derived from arithmetic relations between powers of phi (A001622): a(n) = phi^n - (-1)^n * (n - phi^-n).
0

%I #25 Sep 21 2023 11:35:43

%S 2,2,1,7,3,16,12,36,39,85,113,210,310,534,829,1379,2191,3588,5760,

%T 9368,15107,24497,39581,64102,103658,167786,271417,439231,710619,

%U 1149880,1860468,3010380,4870815,7881229,12752009,20633274,33385246,54018558,87403765

%N Sequence derived from arithmetic relations between powers of phi (A001622): a(n) = phi^n - (-1)^n * (n - phi^-n).

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PhiNumberSystem.html">Phi Number System</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (-1,2,3,1).

%F a(n) = phi^n - (-1)^n * (n - phi^-n), phi = (1 + sqrt(5))/2 = A001622.

%F G.f.: (2*x+1)*(x^2-2)/((x^2+x-1)*(x+1)^2). - _Alois P. Heinz_, Oct 17 2014

%F a(n) = A000032(n) - (-1)^n*n. - _Alois P. Heinz_, Oct 17 2014

%e a(7) = phi^7 + (n - phi^-7) = 36; a(10) = phi^10 - (n - phi^-10) = 113.

%t LinearRecurrence[{-1,2,3,1},{2,2,1,7},40] (* _Harvey P. Dale_, Sep 21 2023 *)

%o (PARI) a(n)=fibonacci(n-1) + fibonacci(n+1) - n*(-1)^n \\ _Charles R Greathouse IV_, Oct 28 2014

%Y Cf. A000032, A001622.

%K nonn,easy

%O 0,1

%A _Gustavo Mendoza_, Oct 16 2014