login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A194321
Triangular array: g(n,k)=number of fractional parts (i*sqrt(1/2)) in interval [(k-1)/n, k/n], for 1<=i<=n, 1<=k<=n.
2
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 2, 1, 1, 1, 1, 1, 1, 2, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 2, 1, 1, 0, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 2, 1, 0, 2, 1, 1, 1, 1, 1, 1, 0, 2, 1, 1, 1, 1, 2, 0, 1, 1, 1, 1, 1, 1, 1, 2, 0, 1, 1, 2, 0, 1, 1, 1, 1, 1, 0, 2, 1, 1, 0
OFFSET
1,13
COMMENTS
See A194285.
EXAMPLE
First eleven rows:
1
1..1
1..1..1
1..1..1..1
1..0..2..1..1
1..1..1..1..2..0
1..1..1..1..1..1..1
1..1..0..1..1..2..1..1
0..1..1..2..1..1..1..1..1
1..1..1..1..1..1..1..1..1..1
1..1..1..0..2..1..0..2..1..1..1
MATHEMATICA
r = Sqrt[1/2];
f[n_, k_, i_] := If[(k - 1)/n <= FractionalPart[i*r] < k/n, 1, 0]
g[n_, k_] := Sum[f[n, k, i], {i, 1, n}]
TableForm[Table[g[n, k], {n, 1, 14}, {k, 1, n}]]
Flatten[%] (* A194321 *)
CROSSREFS
Cf. A194285.
Sequence in context: A174341 A168516 A294335 * A194852 A158854 A376632
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Aug 22 2011
STATUS
approved