login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A194285 Triangular array:  g(n,k)=number of fractional parts (i*sqrt(2)) in interval [(k-1)/n, k/n], for 1<=i<=n, 1<=k<=n. 61
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 0, 1, 1, 1, 1, 0, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 0, 1, 1, 2, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 2, 1, 1, 0 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,18

COMMENTS

Row n of A194285 counts fractional parts (i*r), for i=1,2,...,n, in each of the intervals indicated.  It is of interest to count (i*r) for i=1,2,...,s(n) for various choices of s(n), such as 2n, n^2, and 2^n.  In each case, (n-th row sum)=s(n).  Examples:

...

r.................s(n)....g(n,k)

sqrt(2)...........n.......A194285

sqrt(2)...........2n......A194286

sqrt(2)...........n^2.....A194287

sqrt(2)...........2^n.....A194288

sqrt(3)...........n.......A194289

sqrt(3)...........2n......A194290

sqrt(3)...........n^2.....A194291

sqrt(3)...........2^n.....A194292

tau...............n.......A194293, tau=(1+sqrt(5))/2

tau...............2n......A194294

tau...............n^2.....A194295

tau...............2^n.....A194296

(-1+sqrt(3))/2....n.......A194297

(-1+sqrt(3))/2....2n......A194298

(-1+sqrt(3))/2....n^2.....A194299

(-1+sqrt(3))/2....2^n.....A194300

sqrt(5)...........n.......A194301

sqrt(5)...........2n......A194302

sqrt(5)...........n^2.....A194303

sqrt(5)...........2^n.....A194304

pi................n.......A194305

pi................2n......A194306

pi................n^2.....A194307

pi................2^n.....A194308

e.................n.......A194309

e.................2n......A194310

e.................n^2.....A194311

e.................2^n.....A194312

sqrt(6)...........n.......A194313

sqrt(6)...........2n......A194314

sqrt(6)...........n^2.....A194315

sqrt(6)...........2^n.....A194316

sqrt(8)...........n.......A194317

sqrt(8)...........2n......A194318

sqrt(8)...........n^2.....A194319

sqrt(8)...........2^n.....A194320

sqrt(1/2).........n.......A194321

sqrt(1/2).........2n......A194322

sqrt(1/2).........n^2.....A194323

sqrt(1/2).........2^n.....A194324

2-sqrt(2).........n.......A194325

2-sqrt(2).........2n......A194326

2-sqrt(2).........n^2.....A194327

2-sqrt(2).........2^n.....A194328

2-sqrt(3).........n.......A194329

2-sqrt(3).........2n......A194330

2-sqrt(3).........n^2.....A194331

2-sqrt(3).........2^n.....A194332

2-tau.............n.......A194333

2-tau.............2n......A194334

2-tau.............n^2.....A194335

2-tau.............2^n.....A194336

3-sqrt(5).........n.......A194337

3-sqrt(5).........2n......A194338

3-sqrt(5).........n^2.....A194339

3-sqrt(5).........2^n.....A194340

3-e...............n.......A194341

3-e...............2n......A194342

3-e...............n^2.....A194343

3-e...............2^n.....A194344

...

Questions for each such triangle:

(1)  Which rows are constant?

(2)  Maximal number of distinct numbers per row?

REFERENCES

Ivan Niven, Diophantine Approximations, Interscience Publishers, 1963, pages 23-45.

Ronald L. Graham, Shen Lin, Chio-Shih Lin, Spectra of Numbers, Mathematics Magazine 51 (1978) 174-176.

LINKS

Table of n, a(n) for n=1..100.

EXAMPLE

1

1..1

1..1..1

1..1..1..1

1..1..1..1..1

1..1..2..1..1..0

1..1..1..1..1..1..1

1..1..1..2..0..1..1..1

Take n=6, r=sqrt(2):

(r)=-1+r=0.41412... in [2/6,3/6)

(2r)=-2+2r=0.828... in [4/6,5/6)

(3r)=-4+3r=0.242... in [1/6,2/6)

(4r)=-5+4r=0.656... in [3/6,4/6)

(5r)=-7+5r=0.071... in [0/6,1/6)

(6r)=-8+6r=0.485... in [2/6,3/6),

so that row 6 is 1..1..2..1..1..0.

MATHEMATICA

r = Sqrt[2];

f[n_, k_, i_] := If[(k - 1)/n <= FractionalPart[i*r] < k/n, 1, 0]

g[n_, k_] := Sum[f[n, k, i], {i, 1, n}]

TableForm[Table[g[n, k], {n, 1, 20}, {k, 1, n}]]

Flatten[%]  (* A194285 *)

CROSSREFS

Cf. A194286, A194287, A194288.

Sequence in context: A073490 A225654 A236747 * A135341 A033665 A104234

Adjacent sequences:  A194282 A194283 A194284 * A194286 A194287 A194288

KEYWORD

nonn,tabl

AUTHOR

Clark Kimberling, Aug 21 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 6 06:58 EST 2016. Contains 278775 sequences.