login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A194285
Triangular array: g(n,k)=number of fractional parts (i*sqrt(2)) in interval [(k-1)/n, k/n], for 1<=i<=n, 1<=k<=n.
61
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 0, 1, 1, 1, 1, 0, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 0, 1, 1, 2, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 2, 1, 1, 0
OFFSET
1,18
COMMENTS
Row n of A194285 counts fractional parts (i*r), for i=1,2,...,n, in each of the intervals indicated. It is of interest to count (i*r) for i=1,2,...,s(n) for various choices of s(n), such as 2n, n^2, and 2^n. In each case, (n-th row sum)=s(n). Examples:
...
r.................s(n)....g(n,k)
sqrt(2)...........n.......A194285
sqrt(2)...........2n......A194286
sqrt(2)...........n^2.....A194287
sqrt(2)...........2^n.....A194288
sqrt(3)...........n.......A194289
sqrt(3)...........2n......A194290
sqrt(3)...........n^2.....A194291
sqrt(3)...........2^n.....A194292
tau...............n.......A194293, tau=(1+sqrt(5))/2
tau...............2n......A194294
tau...............n^2.....A194295
tau...............2^n.....A194296
(-1+sqrt(3))/2....n.......A194297
(-1+sqrt(3))/2....2n......A194298
(-1+sqrt(3))/2....n^2.....A194299
(-1+sqrt(3))/2....2^n.....A194300
sqrt(5)...........n.......A194301
sqrt(5)...........2n......A194302
sqrt(5)...........n^2.....A194303
sqrt(5)...........2^n.....A194304
pi................n.......A194305
pi................2n......A194306
pi................n^2.....A194307
pi................2^n.....A194308
e.................n.......A194309
e.................2n......A194310
e.................n^2.....A194311
e.................2^n.....A194312
sqrt(6)...........n.......A194313
sqrt(6)...........2n......A194314
sqrt(6)...........n^2.....A194315
sqrt(6)...........2^n.....A194316
sqrt(8)...........n.......A194317
sqrt(8)...........2n......A194318
sqrt(8)...........n^2.....A194319
sqrt(8)...........2^n.....A194320
sqrt(1/2).........n.......A194321
sqrt(1/2).........2n......A194322
sqrt(1/2).........n^2.....A194323
sqrt(1/2).........2^n.....A194324
2-sqrt(2).........n.......A194325
2-sqrt(2).........2n......A194326
2-sqrt(2).........n^2.....A194327
2-sqrt(2).........2^n.....A194328
2-sqrt(3).........n.......A194329
2-sqrt(3).........2n......A194330
2-sqrt(3).........n^2.....A194331
2-sqrt(3).........2^n.....A194332
2-tau.............n.......A194333
2-tau.............2n......A194334
2-tau.............n^2.....A194335
2-tau.............2^n.....A194336
3-sqrt(5).........n.......A194337
3-sqrt(5).........2n......A194338
3-sqrt(5).........n^2.....A194339
3-sqrt(5).........2^n.....A194340
3-e...............n.......A194341
3-e...............2n......A194342
3-e...............n^2.....A194343
3-e...............2^n.....A194344
...
Questions for each such triangle:
(1) Which rows are constant?
(2) Maximal number of distinct numbers per row?
REFERENCES
Ivan Niven, Diophantine Approximations, Interscience Publishers, 1963, pages 23-45.
LINKS
Ronald L. Graham, Shen Lin, Chio-Shih Lin, Spectra of numbers, Math. Mag. 51 (1978), 174-176.
EXAMPLE
1
1..1
1..1..1
1..1..1..1
1..1..1..1..1
1..1..2..1..1..0
1..1..1..1..1..1..1
1..1..1..2..0..1..1..1
Take n=6, r=sqrt(2):
(r)=-1+r=0.41412... in [2/6,3/6)
(2r)=-2+2r=0.828... in [4/6,5/6)
(3r)=-4+3r=0.242... in [1/6,2/6)
(4r)=-5+4r=0.656... in [3/6,4/6)
(5r)=-7+5r=0.071... in [0/6,1/6)
(6r)=-8+6r=0.485... in [2/6,3/6),
so that row 6 is 1..1..2..1..1..0.
MATHEMATICA
r = Sqrt[2];
f[n_, k_, i_] := If[(k - 1)/n <= FractionalPart[i*r] < k/n, 1, 0]
g[n_, k_] := Sum[f[n, k, i], {i, 1, n}]
TableForm[Table[g[n, k], {n, 1, 20}, {k, 1, n}]]
Flatten[%] (* A194285 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Aug 21 2011
STATUS
approved