|
|
A194336
|
|
Triangular array: g(n,k)=number of fractional parts (i*r) in interval [(k-1)/n, k/n], for 1<=i<=2^n, 1<=k<=n, r=2-tau, where tau=(1+sqrt(5))/2, the golden ratio.
|
|
2
|
|
|
2, 2, 2, 3, 2, 3, 4, 4, 4, 4, 6, 7, 7, 6, 6, 11, 10, 12, 10, 11, 10, 18, 17, 19, 19, 17, 19, 19, 32, 31, 32, 33, 31, 32, 33, 32, 56, 58, 56, 58, 57, 56, 57, 57, 57, 102, 103, 103, 102, 103, 102, 102, 103, 102, 102, 185, 187, 186, 187, 187, 186, 185, 185, 187, 186
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
See A194285.
|
|
LINKS
|
Table of n, a(n) for n=1..65.
|
|
EXAMPLE
|
First eight rows:
2
2...2
3...2...3
4...4...4...4
6...7...7...6...6
11..10..12..10..11..10
18..17..19..19..17..19..19
32..31..32..33..31..32..33..32
|
|
MATHEMATICA
|
r = 2-GoldenRatio;
f[n_, k_, i_] := If[(k - 1)/n <= FractionalPart[i*r] < k/n, 1, 0]
g[n_, k_] := Sum[f[n, k, i], {i, 1, 2^n}]
TableForm[Table[g[n, k], {n, 1, 14}, {k, 1, n}]]
Flatten[%] (* A194336 *)
|
|
CROSSREFS
|
Cf. A194285.
Sequence in context: A306608 A143976 A194296 * A127159 A025128 A058769
Adjacent sequences: A194333 A194334 A194335 * A194337 A194338 A194339
|
|
KEYWORD
|
nonn,tabl
|
|
AUTHOR
|
Clark Kimberling, Aug 22 2011
|
|
STATUS
|
approved
|
|
|
|