login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A194333
Triangular array: g(n,k)=number of fractional parts (i*r) in interval [(k-1)/n, k/n], for 1<=i<=n, 1<=k<=n, r=2-tau, where tau=(1+sqrt(5))/2, the golden ratio.
2
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 0, 2, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 2, 0, 2, 1, 1, 1, 1
OFFSET
1,24
COMMENTS
See A194285.
EXAMPLE
First eleven rows:
1
1..1
1..1..1
1..1..1..1
1..1..1..1..1
1..1..1..1..1..1
0..1..2..1..1..1..1
1..1..1..1..1..1..1..1
1..1..1..2..1..0..2..0..1
1..1..1..1..1..1..1..1..1..1
1..1..1..1..2..1..0..1..1..1..1
MATHEMATICA
r = 2-GolenRatio;
f[n_, k_, i_] := If[(k - 1)/n <= FractionalPart[i*r] < k/n, 1, 0]
g[n_, k_] := Sum[f[n, k, i], {i, 1, n}]
TableForm[Table[g[n, k], {n, 1, 14}, {k, 1, n}]]
Flatten[%] (* A194333 *)
CROSSREFS
Cf. A194333.
Sequence in context: A191898 A043290 A356153 * A203640 A043289 A063775
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Aug 22 2011
STATUS
approved