login
A194343
Triangular array: g(n,k)=number of fractional parts (i*r) in interval [(k-1)/n, k/n], for 1<=i<=n^2, 1<=k<=n, r=3-e.
2
1, 2, 2, 3, 3, 3, 3, 4, 5, 4, 5, 5, 5, 5, 5, 6, 7, 5, 7, 5, 6, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 10, 9, 9, 9, 9, 10, 8, 10, 11, 10, 10, 9, 10, 11, 9, 10, 10, 11, 11, 12, 10, 12, 10, 12, 10, 11, 11, 11, 12, 12, 12, 13, 12, 12, 13, 12, 11, 12, 12, 11, 14, 12, 14
OFFSET
1,2
COMMENTS
See A194285.
EXAMPLE
First eight rows:
1
2..2
3..3..3
3..4..5..4
5..5..5..5..5
6..7..5..7..5..6
7..7..7..7..7..7..7
8..8..8..8..8..8..8..8
MATHEMATICA
r = 3-E;
f[n_, k_, i_] := If[(k - 1)/n <= FractionalPart[i*r] < k/n, 1, 0]
g[n_, k_] := Sum[f[n, k, i], {i, 1, n^2}]
TableForm[Table[g[n, k], {n, 1, 14}, {k, 1, n}]]
Flatten[%] (* A194343 *)
CROSSREFS
Cf. A194343.
Sequence in context: A055656 A078571 A362970 * A071860 A358472 A004788
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Aug 22 2011
STATUS
approved