login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A194294
Triangular array: g(n,k)=number of fractional parts (i*r) in interval [(k-1)/n, k/n], for 1<=i<=n, 1<=k<=2n, r=(1+sqrt(5))/2, the golden ratio.
2
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 1, 2, 3, 1, 3, 1, 2, 2, 2, 2, 2, 2, 2, 3, 2, 1, 2, 2, 2, 2, 1, 2, 3, 2, 2, 2, 2, 1, 2, 3, 2, 2, 1, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 3, 2, 2, 2, 2
OFFSET
1,1
COMMENTS
See A194285.
EXAMPLE
First nine rows:
2
2..2
2..2..2
2..2..2..2
2..2..2..2..2
1..3..2..2..2..2
2..2..2..2..3..2..1
2..2..2..2..2..2..2..2
2..2..3..1..2..3..1..3..1
MATHEMATICA
r = GoldenRatio;
f[n_, k_, i_] := If[(k - 1)/n <= FractionalPart[i*r] < k/n, 1, 0]
g[n_, k_] := Sum[f[n, k, i], {i, 1, 2n}]
TableForm[Table[g[n, k], {n, 1, 14}, {k, 1, n}]]
Flatten[%] (* A194294 *)
CROSSREFS
Sequence in context: A044926 A074264 A194302 * A263110 A044927 A343643
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Aug 21 2011
STATUS
approved