login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A336676
Irregular triangle read by rows: T(n, k) is the number of self-conjugate partitions of n into exactly k parts, for n >= 0 and 2*k - 1 <= n <= k^2.
1
1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 0, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 0, 1, 1, 1, 2, 1, 1, 1, 1, 0, 2, 2, 2, 1, 1, 0, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 3, 2, 2, 1, 1, 0, 1, 2, 2, 2, 2, 1
OFFSET
0,40
COMMENTS
If n > 0, T(n, k) is the number of self-conjugate partitions of n-2*k+1 into fewer than k parts. Also, the number of partitions of n into distinct odd parts with largest part 2*k-1.
Columns are symmetric, for k > 0: T(n, k) = T(k^2 + 2*k - 1 - n, k).
Within the range 2*k - 1 <= n <= k^2, T(n, k) = 0 iff n = 2*k + 1 or n = k^2 - 2.
Aligning columns k > 0 to the top (shifting each by 1-2k positions) and transposing gives A178666.
LINKS
Álvar Ibeas, Rows until n=17
FORMULA
T(0, 0) = 1. If n > 0, T(n, k) = Sum_{i < k} T(n - 2*k + 1, i) = A178666(k - 2, n - 2*k + 1).
Column g.f., for k > 0: x^(2*k - 1) * Product_{i=1,...,k-1} (1 + x^(2*i-1)).
If n < 4*k - 2, T(n, k) = A000700(n - 2*k + 1).
CROSSREFS
Cf. A178666, A000700 (row sums), A011782 (column sums).
Sequence in context: A236747 A194285 A367623 * A135341 A344299 A033665
KEYWORD
nonn,tabf
AUTHOR
Álvar Ibeas, Jul 30 2020
STATUS
approved