login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A336675
Number of paths of length n starting at initial node of the path graph P_10.
3
1, 1, 2, 3, 6, 10, 20, 35, 70, 126, 251, 460, 911, 1690, 3327, 6225, 12190, 22950, 44744, 84626, 164407, 312019, 604487, 1150208, 2223504, 4239225, 8181175, 15621426, 30108147, 57556155, 110820165, 212037241, 407946421, 781074572, 1501844193, 2877011660, 5529362694
OFFSET
0,3
COMMENTS
Also the number of paths along a corridor width 10, starting from one side.
In general, a(n,m) = (2^n/(m+1))*Sum_{r=1..m} (1-(-1)^r)*cos(Pi*r/(m+1))^n*(1+cos(Pi*r/(m+1))) gives the number of paths of length n starting at the initial node on the path graph P_m. Here we have m=10. - Herbert Kociemba, Sep 14 2020
FORMULA
From Stefano Spezia, Jul 30 2020: (Start)
G.f.: (1 - 3*x^2 + x^4)/(1 - x - 4*x^2 + 3*x^3 + 3*x^4 - x^5).
a(n) = a(n-1) + 4*a(n-2) - 3*a(n-3) - 3*a(n-4) + a(n-5) for n > 4. (End)
a(n) = (2^n/11)*Sum_{r=1..10} (1-(-1)^r)*cos(Pi*r/11)^n*(1+cos(Pi*r/11)). - Herbert Kociemba, Sep 14 2020
MAPLE
X := j -> (-1)^(j/11) - (-1)^(1-j/11):
a := k -> add((2 + X(j))*X(j)^k, j in [1, 3, 5, 7, 9])/11:
seq(simplify(a(n)), n=0..30); # Peter Luschny, Sep 17 2020
MATHEMATICA
a[n_, m_]:=2^(n+1)/(m+1) Module[{x=(Pi r)/(m+1)}, Sum[Cos[x]^n (1+Cos[x]), {r, 1, m, 2}]]
Table[a[n, 10], {n, 0, 40}]//Round (* Herbert Kociemba, Sep 14 2020 *)
PROG
(PARI) my(x='x+O('x^44)); Vec((1 - 3*x^2 + x^4)/(1 - x - 4*x^2 + 3*x^3 + 3*x^4 - x^5)) \\ Joerg Arndt, Jul 31 2020
CROSSREFS
This is row 10 of A094718. Bisections give A224514 (even part), A216710 (odd part).
Cf. A000004 (row 0), A000007 (row 1), A000012 (row 2), A016116 (row 3), A000045 (row 4), A038754 (row 5), A028495 (row 6), A030436 (row 7), A061551 (row 8), A178381 (row 9), this sequence (row 10), A336678 (row 11), A001405 (limit).
Sequence in context: A026034 A178381 A037031 * A336678 A056202 A001405
KEYWORD
nonn,easy,walk
AUTHOR
Nachum Dershowitz, Jul 30 2020
STATUS
approved