OFFSET
0,3
COMMENTS
Also the number of paths along a corridor width 10, starting from one side.
In general, a(n,m) = (2^n/(m+1))*Sum_{r=1..m} (1-(-1)^r)*cos(Pi*r/(m+1))^n*(1+cos(Pi*r/(m+1))) gives the number of paths of length n starting at the initial node on the path graph P_m. Here we have m=10. - Herbert Kociemba, Sep 14 2020
LINKS
Johann Cigler, Some remarks and conjectures related to lattice paths in strips along the x-axis, arXiv:1501.04750 [math.CO], 2015-2016.
Nachum Dershowitz, Between Broadway and the Hudson: A Bijection of Corridor Paths, arXiv:2006.06516 [math.CO], 2020.
Index entries for linear recurrences with constant coefficients, signature (1,4,-3,-3,1).
FORMULA
From Stefano Spezia, Jul 30 2020: (Start)
G.f.: (1 - 3*x^2 + x^4)/(1 - x - 4*x^2 + 3*x^3 + 3*x^4 - x^5).
a(n) = a(n-1) + 4*a(n-2) - 3*a(n-3) - 3*a(n-4) + a(n-5) for n > 4. (End)
a(n) = (2^n/11)*Sum_{r=1..10} (1-(-1)^r)*cos(Pi*r/11)^n*(1+cos(Pi*r/11)). - Herbert Kociemba, Sep 14 2020
MAPLE
X := j -> (-1)^(j/11) - (-1)^(1-j/11):
a := k -> add((2 + X(j))*X(j)^k, j in [1, 3, 5, 7, 9])/11:
seq(simplify(a(n)), n=0..30); # Peter Luschny, Sep 17 2020
MATHEMATICA
a[n_, m_]:=2^(n+1)/(m+1) Module[{x=(Pi r)/(m+1)}, Sum[Cos[x]^n (1+Cos[x]), {r, 1, m, 2}]]
Table[a[n, 10], {n, 0, 40}]//Round (* Herbert Kociemba, Sep 14 2020 *)
PROG
(PARI) my(x='x+O('x^44)); Vec((1 - 3*x^2 + x^4)/(1 - x - 4*x^2 + 3*x^3 + 3*x^4 - x^5)) \\ Joerg Arndt, Jul 31 2020
CROSSREFS
KEYWORD
nonn,easy,walk
AUTHOR
Nachum Dershowitz, Jul 30 2020
STATUS
approved