login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A194286 Triangular array:  g(n,k)=number of fractional parts (i*sqrt(2)) in interval [(k-1)/n, k/n], for 1<=i<=2n, 1<=k<=n. 2
2, 2, 2, 2, 3, 1, 2, 3, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 3, 2, 1, 3, 2, 1, 3, 1, 3, 1, 3, 2, 2, 2, 2, 2, 2, 2, 3, 1, 2, 2, 2, 1, 3, 2, 3, 1, 2, 2, 3, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 3, 2, 1, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

See A194285.

LINKS

Table of n, a(n) for n=1..99.

EXAMPLE

First eight rows:

2

2..2

2..3..1

2..3..1..2

2..2..2..2..2

2..2..2..2..2..2

2..1..3..2..1..3..2

1..3..1..3..1..3..2..2

MATHEMATICA

r = Sqrt[2];

f[n_, k_, i_] := If[(k - 1)/n <= FractionalPart[i*r] < k/n, 1, 0]

g[n_, k_] := Sum[f[n, k, i], {i, 1, 2 n}]

TableForm[Table[g[n, k], {n, 1, 14}, {k, 1, n}]]

Flatten[%]    (* A194286 *)

CROSSREFS

Cf. A194285.

Sequence in context: A238646 A194330 A280667 * A063473 A096859 A301304

Adjacent sequences:  A194283 A194284 A194285 * A194287 A194288 A194289

KEYWORD

nonn,tabl

AUTHOR

Clark Kimberling, Aug 21 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 4 13:06 EST 2021. Contains 349526 sequences. (Running on oeis4.)