login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A238646
Number of primes p < n such that the number of squarefree numbers among 1, ..., n-p is prime.
2
0, 0, 0, 1, 2, 2, 2, 2, 3, 1, 2, 1, 3, 1, 3, 1, 4, 2, 3, 2, 5, 4, 5, 1, 3, 3, 4, 2, 5, 3, 4, 5, 8, 3, 5, 1, 5, 5, 7, 3, 5, 2, 6, 3, 6, 6, 9, 4, 8, 7, 7, 6, 7, 4, 6, 7, 8, 5, 6, 4, 7, 8, 9, 6, 6, 6, 9, 5, 7, 4, 8, 6, 10, 6, 5, 8, 11, 7, 10, 6
OFFSET
1,5
COMMENTS
Conjecture: a(n) > 0 for all n > 3, and a(n) = 1 only for n = 4, 10, 12, 14, 16, 24, 36.
This is analog of the conjecture in A237705 for squarefree numbers.
We have verified the conjecture for n up to 60000.
LINKS
Zhi-Wei Sun, Problems on combinatorial properties of primes, arXiv:1402.6641, 2014.
EXAMPLE
a(10) = 1 since 7 and 3 are both prime, and there are exactly 3 squarefree numbers among 1, ..., 10-7.
a(36) = 1 since 17 and 13 are both prime, and there are exactly 13 squarefree numbers among 1, ..., 36-17 (namely, 1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19).
MATHEMATICA
s[n_]:=Sum[If[SquareFreeQ[k], 1, 0], {k, 1, n}]
a[n_]:=Sum[If[PrimeQ[s[n-Prime[k]]], 1, 0], {k, 1, PrimePi[n-1]}]
Table[a[n], {n, 1, 80}]
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Mar 02 2014
STATUS
approved