login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A194325 Triangular array:  g(n,k)=number of fractional parts (i*r) in interval [(k-1)/n, k/n], for 1<=i<=n, 1<=k<=n, r=2-sqrt(2). 2
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 0, 1, 0, 2, 1, 1, 0, 2, 1, 1, 1, 1, 0, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 0, 1, 1, 1, 1, 2, 1, 1, 0, 1, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,19

COMMENTS

See A194285.

LINKS

Table of n, a(n) for n=1..99.

EXAMPLE

First twelve rows:

1

1..1

1..1..1

1..1..1..1

1..1..1..1..1

0..1..1..2..1..1

1..1..1..1..1..1..1

1..1..1..0..2..1..1..1

1..1..1..1..1..1..2..0..1

0..2..1..1..0..2..1..1..1..1

0..2..1..1..1..1..1..1..1..1..1

1..1..1..1..1..1..1..1..1..1..1..1

MATHEMATICA

r = 2-Sqrt[2];

f[n_, k_, i_] := If[(k - 1)/n <= FractionalPart[i*r] < k/n, 1, 0]

g[n_, k_] := Sum[f[n, k, i], {i, 1, n}]

TableForm[Table[g[n, k], {n, 1, 14}, {k, 1, n}]]

Flatten[%]    (* A194325 *)

CROSSREFS

Cf. A194285.

Sequence in context: A249351 A123706 A322817 * A300547 A025452 A299202

Adjacent sequences:  A194322 A194323 A194324 * A194326 A194327 A194328

KEYWORD

nonn,tabl

AUTHOR

Clark Kimberling, Aug 22 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 14 10:04 EST 2019. Contains 329111 sequences. (Running on oeis4.)