The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A025452 Number of partitions of n into 8 nonnegative cubes. 1
 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 2, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 2, 2, 1, 2, 1, 3, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 1, 2, 3, 2, 3, 2, 2, 2, 1, 2, 2, 2, 3, 3, 2, 2, 2, 2, 3, 2, 3, 2, 1, 2, 1, 2, 2, 2, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,9 COMMENTS a(n) = 0 only for n = 23 and 239, as these two are the only numbers requiring at least nine cubes in any partition into cubes (cf. Dickson, 1939). - Felix Fröhlich, Sep 09 2017 LINKS Felix Fröhlich, Table of n, a(n) for n = 0..10000 L. E. Dickson, All integers except 23 and 239 are sums of eight cubes, Bulletin of the American Mathematical Society, Vol. 45, No. 8 (1939), 588-591. PROG (PARI) cubes(bound) = my(v=[], x=0); while(1, v=concat(v, [x^3]); x++; if(x^3 > bound, return(v))) a(n) = my(i=0, c=cubes(n)); for(s=1, #c, for(t=s, #c, for(u=t, #c, for(v=u, #c, for(w=v, #c, for(x=w, #c, for(y=x, #c, for(z=y, #c, if(n==c[s]+c[t]+c[u]+c[v]+c[w]+c[x]+c[y]+c[z], i++))))))))); i \\ Felix Fröhlich, Sep 09 2017 CROSSREFS Sequence in context: A322817 A194325 A300547 * A299202 A194337 A299912 Adjacent sequences:  A025449 A025450 A025451 * A025453 A025454 A025455 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 17 01:53 EDT 2021. Contains 347478 sequences. (Running on oeis4.)