login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A025452
Number of partitions of n into 8 nonnegative cubes.
1
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 2, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 2, 2, 1, 2, 1, 3, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 1, 2, 3, 2, 3, 2, 2, 2, 1, 2, 2, 2, 3, 3, 2, 2, 2, 2, 3, 2, 3, 2, 1, 2, 1, 2, 2, 2, 2
OFFSET
0,9
COMMENTS
a(n) = 0 only for n = 23 and 239, as these two are the only numbers requiring at least nine cubes in any partition into cubes (cf. Dickson, 1939). - Felix Fröhlich, Sep 09 2017
LINKS
L. E. Dickson, All integers except 23 and 239 are sums of eight cubes, Bulletin of the American Mathematical Society, Vol. 45, No. 8 (1939), 588-591.
PROG
(PARI) cubes(bound) = my(v=[], x=0); while(1, v=concat(v, [x^3]); x++; if(x^3 > bound, return(v)))
a(n) = my(i=0, c=cubes(n)); for(s=1, #c, for(t=s, #c, for(u=t, #c, for(v=u, #c, for(w=v, #c, for(x=w, #c, for(y=x, #c, for(z=y, #c, if(n==c[s]+c[t]+c[u]+c[v]+c[w]+c[x]+c[y]+c[z], i++))))))))); i \\ Felix Fröhlich, Sep 09 2017
CROSSREFS
Sequence in context: A322817 A194325 A300547 * A299202 A194337 A365335
KEYWORD
nonn
STATUS
approved