login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A194305
Triangular array: g(n,k) = number of fractional parts (i*Pi) in interval [(k-1)/n, k/n], for 1 <= i <= n, 1 <= k <= n.
3
1, 2, 0, 2, 1, 0, 1, 2, 1, 0, 1, 1, 2, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 2, 1, 1, 1, 1, 1, 1, 0, 2, 2, 1, 0, 1, 1, 1, 1, 0, 2, 2, 0, 2, 1, 0, 1, 1, 1, 0, 2, 0, 2, 2, 0, 2, 1, 0, 1, 1, 0, 2, 0, 2, 1, 1, 2, 0, 2, 0, 1, 1, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 1, 1, 1, 0, 2, 0, 2, 0, 2, 0, 2
OFFSET
1,2
COMMENTS
See A194285.
EXAMPLE
First eleven rows:
1;
2, 0;
2, 1, 0;
1, 2, 1, 0;
1, 1, 2, 1, 0;
1, 1, 1, 1, 1, 1;
1, 1, 1, 1, 1, 1, 1;
0, 2, 1, 1, 1, 1, 1, 1;
0, 2, 2, 1, 0, 1, 1, 1, 1;
0, 2, 2, 0, 2, 1, 0, 1, 1, 1;
0, 2, 0, 2, 2, 0, 2, 1, 0, 1, 1;
MATHEMATICA
r = Pi;
f[n_, k_, i_] := If[(k - 1)/n <= FractionalPart[i*r] < k/n, 1, 0]
g[n_, k_] := Sum[f[n, k, i], {i, 1, n}]
TableForm[Table[g[n, k], {n, 1, 14}, {k, 1, n}]]
Flatten[%] (* A194305 *)
CROSSREFS
Cf. A194285.
Sequence in context: A186809 A112300 A049239 * A036580 A101674 A100820
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Aug 21 2011
STATUS
approved