login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A194307 Triangular array: g(n,k) = number of fractional parts (i*Pi) in interval [(k-1)/n, k/n], for 1 <= i <= n^2, 1 <= k <= n. 2
1, 3, 1, 4, 2, 3, 3, 5, 4, 4, 4, 5, 7, 3, 6, 6, 5, 5, 5, 8, 7, 7, 7, 7, 7, 7, 7, 7, 8, 7, 7, 7, 8, 9, 9, 9, 8, 9, 8, 11, 10, 8, 7, 9, 11, 10, 10, 10, 11, 9, 9, 12, 9, 9, 11, 10, 12, 10, 12, 11, 10, 11, 12, 10, 11, 12, 9, 14, 11, 13, 14, 10, 13, 10, 13, 12, 11, 14, 8, 17, 11, 14 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
See A194285.
LINKS
EXAMPLE
First eight rows:
1;
3, 1;
4, 2, 3;
3, 5, 4, 4;
4, 5, 7, 3, 6;
6, 5, 5, 5, 8, 7;
7, 7, 7, 7, 7, 7, 7;
8, 7, 7, 7, 8, 9, 9, 9;
MATHEMATICA
r = Pi;
f[n_, k_, i_] := If[(k - 1)/n <= FractionalPart[i*r] < k/n, 1, 0]
g[n_, k_] := Sum[f[n, k, i], {i, 1, n^2}]
TableForm[Table[g[n, k], {n, 1, 14}, {k, 1, n}]]
Flatten[%] (* A194307 *)
CROSSREFS
Cf. A194285.
Sequence in context: A242111 A209919 A116537 * A346770 A048225 A155481
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Aug 21 2011
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 24 18:11 EDT 2024. Contains 373687 sequences. (Running on oeis4.)