login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A112300
Expansion of x * (1 - x)^2 * (1 - x^2) / (1 - x^6) in powers of x.
2
1, -2, 0, 2, -1, 0, 1, -2, 0, 2, -1, 0, 1, -2, 0, 2, -1, 0, 1, -2, 0, 2, -1, 0, 1, -2, 0, 2, -1, 0, 1, -2, 0, 2, -1, 0, 1, -2, 0, 2, -1, 0, 1, -2, 0, 2, -1, 0, 1, -2, 0, 2, -1, 0, 1, -2, 0, 2, -1, 0, 1, -2, 0, 2, -1, 0, 1, -2, 0, 2, -1, 0, 1, -2, 0, 2, -1, 0, 1, -2, 0, 2, -1, 0, 1, -2, 0, 2, -1, 0, 1, -2, 0, 2, -1, 0, 1, -2, 0, 2, -1, 0, 1, -2, 0
OFFSET
1,2
FORMULA
Euler transform of length 6 sequence [ -2, -1, 0, 0, 0, 1].
Multiplicative with a(2^e) = 2*(-1)^e if e>0, a(3^e) = 0 if e>0, a(p^e) = 1 if p == 1 (mod 6), a(p^e) = (-1)^e if p == 5 (mod 6).
G.f.: x * (1 - x)^2 / ((1 - x + x^2) * (1 + x + x^2)). - Michael Somos, May 04 2015
G.f.: -(f(x) + 3*f(-x)) / 2 where f(x) := x / (1 - x + x^2). - Michael Somos, May 04 2015
a(n) = -a(3 - n) = a(n+6), a(3*n) = 0 for all n in Z.
EXAMPLE
G.f. = x - 2*x^2 + 2*x^4 - x^5 + x^7 - 2*x^8 + 2*x^10 - x^11 + x^13 - 2*x^14 + ...
MATHEMATICA
a[ n_] := {0, 1, -2, 0, 2, -1} [[ Mod[n, 6] + 1]]; (* Michael Somos, May 04 2015 *)
PadRight[{}, 120, {1, -2, 0, 2, -1, 0}] (* Harvey P. Dale, Jul 09 2019 *)
PROG
(PARI) {a(n) = [0, 1, -2, 0, 2, -1][n%6 + 1]};
CROSSREFS
Sequence in context: A061264 A193680 A186809 * A049239 A194305 A036580
KEYWORD
sign,easy,mult
AUTHOR
Michael Somos, Sep 02 2005
STATUS
approved