login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A193680
Period 6 sequence 0,1,2,0,2,1.
7
0, 1, 2, 0, 2, 1, 0, 1, 2, 0, 2, 1, 0, 1, 2, 0, 2, 1, 0, 1, 2, 0, 2, 1, 0, 1, 2, 0, 2, 1, 0, 1, 2, 0, 2, 1, 0, 1, 2, 0, 2, 1, 0, 1, 2, 0, 2, 1, 0, 1, 2, 0, 2, 1, 0, 1, 2, 0, 2, 1, 0, 1, 2, 0, 2, 1, 0, 1, 2, 0, 2, 1, 0, 1, 2, 0, 2, 1, 0, 1, 2, 0, 2, 1, 0, 1, 2, 0, 2, 1
OFFSET
0,3
COMMENTS
This sequence can be extended periodically to negative values of n.
See a comment on A203571 where a k-family of 2k-periodic sequences P_k has been defined. The present sequence is P_3. - Wolfdieter Lang, Feb 02 2012
FORMULA
a(n) = n (mod 3) if (-1)^floor(n/3)=+1 else (3 - n)(mod 3), n>=0. (-1)^floor(n/3) is the parity of the quotient floor(n/3), sometimes denoted by n\3.
O.g.f.: x*(1+2*x+2*x^3+x^4)/(1-x^6).
a(n) = 1-((-1)^(n+1)+cos(Pi*n/3)+3*cos(2*Pi*n/3))/3. - R. J. Mathar, Oct 07 2011, corrected by Vaclav Kotesovec, Feb 19 2023
a(n) = floor((71/364)*3^(n+1)) mod 3. - Hieronymus Fischer, Jan 04 2013
a(n) = floor((4007/333333)*10^(n+1)) mod 10. - Hieronymus Fischer, Jan 04 2013
From Amiram Eldar, Jan 01 2023: (Start)
Multiplicative with a(2^e) = 2, a(3^e) = 0, and a(p^e) = 1 for p >= 5.
Dirichlet g.f.: zeta(s)*(1+1/2^s-1/3^s-1/6^s). (End)
EXAMPLE
a(8) = 8(mod 3) = 2 because (-1)^floor(8/3)= +1; 8\3 = 2 is even.
a(4) = (3-4)(mod 3) = 2, because (-1)^floor(4/3) is -1; 4\3 = 1 is odd.
MATHEMATICA
Table[{0, 1, 2, 0, 2, 1}, {15}] // Flatten (* Jean-François Alcover, Jun 21 2013 *)
PadRight[{}, 120, {0, 1, 2, 0, 2, 1}] (* Harvey P. Dale, Jul 25 2020 *)
PROG
(PARI) a(n)=[0, 1, 2, 0, 2, 1][n%6+1] \\ Charles R Greathouse IV, Oct 07 2011
CROSSREFS
Cf. signed versions A112300, A186809.
Sequence in context: A336921 A297742 A061264 * A186809 A112300 A049239
KEYWORD
nonn,easy,mult,changed
AUTHOR
Wolfdieter Lang, Sep 30 2011
EXTENSIONS
Keyword:mult added by Andrew Howroyd, Jul 31 2018
STATUS
approved