login
A193679
Sequence related to discriminant of cyclotomic polynomials A004124.
5
1, 2, 3, 4, 5, 12, 7, 16, 27, 80, 11, 144, 13, 448, 2025, 256, 17, 1728, 19, 6400, 35721, 11264, 23, 20736, 3125, 53248, 19683, 200704, 29, 518400, 31, 65536, 7144929, 1114112, 37515625, 2985984, 37, 4980736, 89813529, 40960000, 41, 146313216, 43, 126877696
OFFSET
1,2
COMMENTS
a(p) = p for primes p.
REFERENCES
P. Ribenboim, Classical Theory of Algebraic Numbers, Springer, 2001, p. 297, eq.(1).
LINKS
Mohammad K. Azarian, On the Hyperfactorial Function, Hypertriangular Function, and the Discriminants of Certain Polynomials, International Journal of Pure and Applied Mathematics, Vol. 36, No. 2, 2007, pp. 251-257. Mathematical Reviews, MR2312537. Zentralblatt MATH, Zbl 1133.11012.
Eric Weisstein's World of Mathematics, Cyclotomic Polynomial
FORMULA
a(n) = n^phi(n)/abs(discriminant(Phi(n,x))), n>=1, with the cyclotomic polynomials Phi(n,x) and the Euler totient function phi(n)=A000010(n).
a(n) = product(p^(phi(n)/(p-1)),p prime dividing n), n>=2, a(1)=1.
Conjecture: Dirichlet g.f. of log(a(n)): -zeta(s-1)*zeta'(s)/zeta(s)^2, where zeta'(s) is the derivative of zeta(s). This would give a(n) = exp(Sum_{d|n} Lambda(d)*phi(n/d)), with Lambda(n)=log(A014963) and phi(n)=A000010. - Benedict W. J. Irwin, Jul 14 2018
EXAMPLE
n=6: a(6) = 2^(2/(2-1))*3^(2/(3-1)) = 12.
Discriminant(Phi(6,x)) = -3 = - (6^phi(6))/a(6).
MAPLE
with(numtheory): A193679 := n -> n^phi(n)/abs(discrim(cyclotomic (n, x), x)); seq(A193679(i), i=1..49); # Peter Luschny, Aug 20 2011
MATHEMATICA
a[n_] := n^EulerPhi[n]/Abs[Discriminant[Cyclotomic[n, x], x]]; Array[a, 44]
(* Jean-François Alcover, Mar 21 2017 *)
Table[Product[d^(-n*MoebiusMu[d]/d), {d, Divisors[n]}], {n, 1, 50}] (* Vaclav Kotesovec, May 12 2024 *)
Table[Product[p^(EulerPhi[n]/(p-1)), {p, Select[Divisors[n], PrimeQ[#]&]}], {n, 1, 50}] (* Vaclav Kotesovec, May 13 2024 *)
PROG
(PARI) a(n) = n^eulerphi(n)/abs(poldisc(polcyclo(n))); \\ Michel Marcus, Jul 14 2018
CROSSREFS
Cf. A004124.
Sequence in context: A327262 A344370 A143482 * A066574 A240304 A325684
KEYWORD
nonn
AUTHOR
Wolfdieter Lang, Aug 20 2011
STATUS
approved