OFFSET
1,2
COMMENTS
a(p) = p for primes p.
REFERENCES
P. Ribenboim, Classical Theory of Algebraic Numbers, Springer, 2001, p. 297, eq.(1).
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..1000
Mohammad K. Azarian, On the Hyperfactorial Function, Hypertriangular Function, and the Discriminants of Certain Polynomials, International Journal of Pure and Applied Mathematics, Vol. 36, No. 2, 2007, pp. 251-257. Mathematical Reviews, MR2312537. Zentralblatt MATH, Zbl 1133.11012.
Eric Weisstein's World of Mathematics, Cyclotomic Polynomial
FORMULA
a(n) = n^phi(n)/abs(discriminant(Phi(n,x))), n>=1, with the cyclotomic polynomials Phi(n,x) and the Euler totient function phi(n)=A000010(n).
a(n) = product(p^(phi(n)/(p-1)),p prime dividing n), n>=2, a(1)=1.
Conjecture: Dirichlet g.f. of log(a(n)): -zeta(s-1)*zeta'(s)/zeta(s)^2, where zeta'(s) is the derivative of zeta(s). This would give a(n) = exp(Sum_{d|n} Lambda(d)*phi(n/d)), with Lambda(n)=log(A014963) and phi(n)=A000010. - Benedict W. J. Irwin, Jul 14 2018
EXAMPLE
n=6: a(6) = 2^(2/(2-1))*3^(2/(3-1)) = 12.
Discriminant(Phi(6,x)) = -3 = - (6^phi(6))/a(6).
MAPLE
with(numtheory): A193679 := n -> n^phi(n)/abs(discrim(cyclotomic (n, x), x)); seq(A193679(i), i=1..49); # Peter Luschny, Aug 20 2011
MATHEMATICA
a[n_] := n^EulerPhi[n]/Abs[Discriminant[Cyclotomic[n, x], x]]; Array[a, 44]
(* Jean-François Alcover, Mar 21 2017 *)
Table[Product[d^(-n*MoebiusMu[d]/d), {d, Divisors[n]}], {n, 1, 50}] (* Vaclav Kotesovec, May 12 2024 *)
Table[Product[p^(EulerPhi[n]/(p-1)), {p, Select[Divisors[n], PrimeQ[#]&]}], {n, 1, 50}] (* Vaclav Kotesovec, May 13 2024 *)
PROG
(PARI) a(n) = n^eulerphi(n)/abs(poldisc(polcyclo(n))); \\ Michel Marcus, Jul 14 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Wolfdieter Lang, Aug 20 2011
STATUS
approved