login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A294332
G.f.: exp( Sum_{n>=1} A180563(n) * x^n / n ).
2
1, 1, -1, 5, -45, 609, -11141, 257281, -7170355, 233936995, -8744103079, 368479396171, -17288353555771, 894005702731735, -50527305282004435, 3099060459670425655, -205028564671300495120, 14554510561318327509610, -1103542106915790217739110, 89009707681627448130203830, -7610129271299704960998906454, 687495658528174987634449288846, -65438091790081511530153327883206, 6545685493719560524729653911676430
OFFSET
0,4
LINKS
EXAMPLE
G.f.: A(x) = 1 + x - x^2 + 5*x^3 - 45*x^4 + 609*x^5 - 11141*x^6 + 257281*x^7 - 7170355*x^8 + 233936995*x^9 - 8744103079*x^10 +...
such that
log(A(x)) = x - 3*x^2/2 + 19*x^3/3 - 207*x^4/4 + 3331*x^5/5 - 71223*x^6/6 + 1890379*x^7/7 - 59652687*x^8/8 + 2175761971*x^9/9 +...+ A180563(n)*x^n/n +...
where the e.g.f. G(x) of A180563 begins
G(x) = x - 3*x^2/2! + 19*x^3/3! - 207*x^4/4! + 3331*x^5/5! - 71223*x^6/6! + 1890379*x^7/7! +...+ A180563(n)*x^n/n! +...
and satisfies: Product_{n>=1} (1 - G(x)^n) = exp(-x).
PROG
(PARI) {A180563(n) = my( L = sum(m=1, n, sigma(m) * x^m/m ) +x*O(x^n) ); n!*polcoeff( serreverse(L), n)}
{a(n) = my(A); A = exp( sum(m=1, n+1, A180563(m)*x^m/m +x*O(x^n)) ); polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
CROSSREFS
Cf. A180653, A294331 (variant).
Sequence in context: A201365 A112940 A343710 * A365604 A085356 A113382
KEYWORD
sign
AUTHOR
Paul D. Hanna, Oct 28 2017
STATUS
approved