login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A180563
E.g.f. A(x) satisfies: P(A(x)) = exp(x) where P(x) = Product_{n>=1} 1/(1-x^n), the partition function.
4
1, -3, 19, -207, 3331, -71223, 1890379, -59652687, 2175761971, -89953773543, 4155502117339, -212122704251967, 11857607972675011, -720435277883199063, 47273215180877201899, -3331797538738820992047, 251025685429022007354451, -20133640365773761748643783, 1712740622904757368673592059
OFFSET
1,2
COMMENTS
Unsigned version is A294330.
LINKS
FORMULA
E.g.f.: A(x) = Series_Reversion( log(P(x)) ) where P(x) = Product_{n>=1} 1/(1-x^n).
From Paul D. Hanna, Oct 28 2017 (Start):
E.g.f. A(x) satisfies:
(1) Sum_{n>=1} sigma(n) * A(x)^n / n = x.
(2) Product_{n>=1} (1 - A(x)^n) = exp(-x).
(3) Sum_{n>=0} (-1)^n * (2*n+1) * A(x)^(n*(n+1)/2) = exp(-3*x). (End)
Logarithmic derivative of A294332. - Paul D. Hanna, Oct 28 2017
EXAMPLE
E.g.f.: A(x) = x - 3*x^2/2! + 19*x^3/3! - 207*x^4/4! + 3331*x^5/5! - 71223*x^6/6! + 1890379*x^7/7! - 59652687*x^8/8! + 2175761971*x^9/9! - 89953773543*x^10/10! +...
such that A( log(P(x)) ) = x, where:
log(P(x)) = x + 3*x^2/2 + 4*x^3/3 + 7*x^4/4 + 6*x^5/5 +...+ sigma(n)*x^n/n +...
and P(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 11*x^6 + 15*x^7 + 22*x^8 + 30*x^9 + 42*x^10 + 56*x^11 + 77*x^12 +...+ A000041(n)*x^n +...
ALTERNATE GENERATING FUNCTION.
L.g.f.: L(x) = x - 3*x^2/2 + 19*x^3/3 - 207*x^4/4 + 3331*x^5/5 - 71223*x^6/6 + 1890379*x^7/7 - 59652687*x^8/8 + 2175761971*x^9/9 - 89953773543*x^10/10 +...
such that
exp(L(x)) = 1 + x - x^2 + 5*x^3 - 45*x^4 + 609*x^5 - 11141*x^6 + 257281*x^7 - 7170355*x^8 + 233936995*x^9 - 8744103079*x^10 +...+ A294332(n)*x^n +...
PROG
(PARI) {a(n) = local( LogPx = sum(m=1, n, sigma(m) * x^m/m ) +x*O(x^n) ); n!*polcoeff( serreverse(LogPx), n)}
for(n=1, 20, print1(a(n), ", "))
CROSSREFS
Cf. A000041 (partitions), A000203 (sigma), A294332, A294330.
Sequence in context: A245308 A182956 A052886 * A294330 A079144 A345218
KEYWORD
sign
AUTHOR
Paul D. Hanna, Sep 09 2010
STATUS
approved