login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

E.g.f. A(x) satisfies: P(A(x)) = exp(x) where P(x) = Product_{n>=1} 1/(1-x^n), the partition function.
4

%I #11 Oct 28 2017 08:38:06

%S 1,-3,19,-207,3331,-71223,1890379,-59652687,2175761971,-89953773543,

%T 4155502117339,-212122704251967,11857607972675011,-720435277883199063,

%U 47273215180877201899,-3331797538738820992047,251025685429022007354451,-20133640365773761748643783,1712740622904757368673592059

%N E.g.f. A(x) satisfies: P(A(x)) = exp(x) where P(x) = Product_{n>=1} 1/(1-x^n), the partition function.

%C Unsigned version is A294330.

%H Paul D. Hanna, <a href="/A180563/b180563.txt">Table of n, a(n) for n = 1..260</a>

%F E.g.f.: A(x) = Series_Reversion( log(P(x)) ) where P(x) = Product_{n>=1} 1/(1-x^n).

%F From _Paul D. Hanna_, Oct 28 2017 (Start):

%F E.g.f. A(x) satisfies:

%F (1) Sum_{n>=1} sigma(n) * A(x)^n / n = x.

%F (2) Product_{n>=1} (1 - A(x)^n) = exp(-x).

%F (3) Sum_{n>=0} (-1)^n * (2*n+1) * A(x)^(n*(n+1)/2) = exp(-3*x). (End)

%F Logarithmic derivative of A294332. - _Paul D. Hanna_, Oct 28 2017

%e E.g.f.: A(x) = x - 3*x^2/2! + 19*x^3/3! - 207*x^4/4! + 3331*x^5/5! - 71223*x^6/6! + 1890379*x^7/7! - 59652687*x^8/8! + 2175761971*x^9/9! - 89953773543*x^10/10! +...

%e such that A( log(P(x)) ) = x, where:

%e log(P(x)) = x + 3*x^2/2 + 4*x^3/3 + 7*x^4/4 + 6*x^5/5 +...+ sigma(n)*x^n/n +...

%e and P(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 11*x^6 + 15*x^7 + 22*x^8 + 30*x^9 + 42*x^10 + 56*x^11 + 77*x^12 +...+ A000041(n)*x^n +...

%e ALTERNATE GENERATING FUNCTION.

%e L.g.f.: L(x) = x - 3*x^2/2 + 19*x^3/3 - 207*x^4/4 + 3331*x^5/5 - 71223*x^6/6 + 1890379*x^7/7 - 59652687*x^8/8 + 2175761971*x^9/9 - 89953773543*x^10/10 +...

%e such that

%e exp(L(x)) = 1 + x - x^2 + 5*x^3 - 45*x^4 + 609*x^5 - 11141*x^6 + 257281*x^7 - 7170355*x^8 + 233936995*x^9 - 8744103079*x^10 +...+ A294332(n)*x^n +...

%o (PARI) {a(n) = local( LogPx = sum(m=1,n, sigma(m) * x^m/m ) +x*O(x^n) ); n!*polcoeff( serreverse(LogPx), n)}

%o for(n=1,20, print1(a(n),", "))

%Y Cf. A000041 (partitions), A000203 (sigma), A294332, A294330.

%K sign

%O 1,2

%A _Paul D. Hanna_, Sep 09 2010