login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A290602
Irregular triangle read by rows. T(n, k) gives the period length of the periodic sequence {A290600(n, k)^i}_{i >= A290601(n, k)} (mod A002808(n)), for n >= 1 and k = 1..A290599(n).
4
1, 2, 1, 1, 1, 1, 1, 1, 1, 4, 2, 1, 1, 4, 2, 2, 1, 1, 2, 1, 1, 3, 3, 2, 1, 1, 6, 6, 4, 2, 1, 2, 1, 4, 1, 1, 1, 1, 1, 1, 1, 6, 1, 3, 1, 2, 1, 1, 1, 6, 1, 3, 4, 2, 1, 1, 4, 1, 4, 2, 2, 1, 4, 6, 2, 1, 3, 6, 2, 1, 3, 10, 5, 10, 10, 2, 1, 1, 5, 5, 10, 5, 2, 2, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1
OFFSET
1,2
COMMENTS
The length of row n is A290599(n).
See A290601 for the proof that this sequence is defined, and the definition of the type of periodicity (imin,P) with imin = A290601(n, k) and the period length P = T(n, k).
EXAMPLE
The irregular triangle T(n, k) begins (N(n) = A002808(n)):
n N(n) \ k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ...
1 4 1
2 6 2 1 1
3 8 1 1 1
4 9 1 1
5 10 4 2 1 1 4
6 12 2 2 1 1 2 1 1
7 14 3 3 2 1 1 6 6
8 15 4 2 1 2 1 4
9 16 1 1 1 1 1 1 1
10 18 6 1 3 1 2 1 1 1 6 1 3
11 20 4 2 1 1 4 1 4 2 2 1 4
12 21 6 2 1 3 6 2 1 3
13 22 10 5 10 10 2 1 1 5 5 10 5
14 24 2 2 1 1 2 1 1 1 2 2 1 1 2 2 1
15 25 1 1 1 1
...
T(5, 1) = 4 because A290600(5, 1) = 2, N(5) = A002808(5) = 10, A290601(5, 1) = 1 and {2^i}_{i>=1} (mod 10) == {repeat(2,4,8,6)} with period length 4. This is of the type (1,4).
T(7, 6) = 6 because A290600(7, 6) = 10, N(7) = A002808(7) = 14, A290601(7, 6) = 1 and {10^i}_{i>=1} (mod 14) == {repeat(10, 2, 6, 4, 12, 8)} with period length 4. Type (1,6).
The sequence {A290600(10, 1)^i}_{i >= A290601(10, 1)} (mod A002808(10)) = {2^i}_{i >= 1} (mod 18) is periodic with period length P = T(10, 1) = 6. Namely, {repeat(2, 4, 8, 16, 14, 10)}, of type (1,6).
The periodicity types (imin,P) = (A290601(n, k), A290602(n, k)) begin:
n N(n) \ k 1 2 3 4 5 6 7 8 9 10 11
1 4 (2,1)
2 6 (1,2) (1,1) (1,1)
3 8 (3,1) (2,1) (3,1)
4 9 (2,1) (2,1)
5 10 (1,4) (1,2) (1,1) (1,1) (1,4)
6 12 (2,2) (1,2) (1,1) (2,1) (1,2) (1,1) (2,1)
7 14 (1,3) (1,3) (1,2) (1,1) (1,1) (1,6) (1,6)
8 15 (1,4) (1,2) (1,1) (1,2) (1,1) (1,4)
9 16 (4,1) (2,1) (4,1) (2,1) (4,1) (2,1) (4,1)
10 18 (1,6) (2,1) (1,3) (2,1) (1,2) (1,1) (1,1) (2,1) (1,6) (2,1) (1,3)
11 20 (2,4) (1,2) (1,1) (2,1) (1,4) (2,1) (1,4) (2,2) (1,2) (1,1) (2,4)
12 21 (1,6) (1,2) (1,1) (1,3) (1,6) (1,2) (1,1) (1,3)
13 22 (1,10) (1,5) (1,10) (1,10) (1,2) (1,1) (1,1) (1,5) (1,5) (1,10) (1,5)
...
----------------------------------------------------------------------------------
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Wolfdieter Lang, Aug 30 2017
STATUS
approved