login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A290600
Irregular triangle T(n, k) read by rows: positive numbers non-coprime to A002808(n) and smaller than A002808(n), sorted increasingly.
4
2, 2, 3, 4, 2, 4, 6, 3, 6, 2, 4, 5, 6, 8, 2, 3, 4, 6, 8, 9, 10, 2, 4, 6, 7, 8, 10, 12, 3, 5, 6, 9, 10, 12, 2, 4, 6, 8, 10, 12, 14, 2, 3, 4, 6, 8, 9, 10, 12, 14, 15, 16, 2, 4, 5, 6, 8, 10, 12, 14, 15, 16, 18, 3, 6, 7, 9, 12, 14, 15, 18
OFFSET
1,1
COMMENTS
The length of row n is A290599(n).
Row n gives the complement of row A038566(A002808(n), k) with respect to [1, 2, ..., A002808(n) - 1].
FORMULA
T(n, k) = k-th entry in the list of increasingly sorted numbers of the set {m = 1..A002808(n)-1: gcd(n, m) not equal to 1}.
EXAMPLE
The irregular triangle T(n, k) begins (N(n) = A002808(n)):
n N(n) \ k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ...
1 4 2
2 6 2 3 4
3 8 2 4 6
4 9 3 6
5 10 2 4 5 6 8
6 12 2 3 4 6 8 9 10
7 14 2 4 6 7 8 10 12
8 15 3 5 6 9 10 12
9 16 2 4 6 8 10 12 14
10 18 2 3 4 6 8 9 10 12 14 15 16
11 20 2 4 5 6 8 10 12 14 15 16 18
12 21 3 6 7 9 12 14 15 18
13 22 2 4 6 8 10 11 12 14 16 18 20
14 24 2 3 4 6 8 9 10 12 14 15 16 18 20 21 22
15 25 5 10 15 20
...
MATHEMATICA
Table[With[{c = FixedPoint[n + PrimePi@ #] + 1 &, n + PrimePi@ n + 1]}, Select[Range[c - 1], ! CoprimeQ[#, c] &]], {n, 12}] // Flatten (* Michael De Vlieger, Sep 03 2017 *)
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Wolfdieter Lang, Aug 30 2017
STATUS
approved