login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A290597
Numerators in the expansion of the exponential generating function ((1 + 3*x)/x)*(1 - (1 + 3*x)^(-2/3)).
7
2, 1, -10, 20, -176, 6160, -29920, 523600, -96342400, 250490240, -6603833600, 581137356800, -6258402304000, 220832195584000, -25351536053043200, 348583620729344000, -15419698987556864000, 6553372069711667200000, -36560917862601932800000, 1945040830290422824960000, -327878311391814133350400000, 6468144870183969721548800000, -402149876711438117470208000000, 78620300897086151965425664000000, -1786253236381797372654471086080000, 127098787973320197669645058048000000
OFFSET
0,1
COMMENTS
The denominators are A038500(n+1), n >= 0.
The rationals z(n) = a(n)/A038500(n+1) give the Sheffer z-sequence for the generalized unsigned Lah triangle L[3,1] = A290596. For Sheffer a- and z-sequences see a W. Lang link under A006232 with the references for the Riordan case, and also the present link for a proof.
FORMULA
a(n) = numerator(r(n)) with the rationals r(n) = [x^n/n!] ((1 + 3*x)/x)*(1 - (1 + 3*x)^(-2/3)).
EXAMPLE
The rationals r(n) = z(3,1;n) = a(n)/A038500(n+1) begin: {2, 1, -10/3, 20, -176, 6160/3, -29920, 523600, -96342400/9, 250490240, -6603833600, 581137356800/3, -6258402304000, 220832195584000, -25351536053043200/3, 348583620729344000, ...}.
CROSSREFS
Cf. A038500, A290596, A290603 (z(3,2;n)).
Sequence in context: A213304 A196130 A177439 * A136205 A327923 A024433
KEYWORD
sign,easy
AUTHOR
Wolfdieter Lang, Sep 13 2017
STATUS
approved