login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A327923
Irregular triangle read by rows: Coefficients of Schick's polynomials P(n, y^2), for n >= 1.
0
1, 1, -2, -1, 10, -24, 16, 1, -42, 504, -2640, 7040, -9984, 7168, -2048, -1, 170, -8568, 201552, -2687360, 22573824, -127339520, 502081536, -1417641984, 2901606400, -4310958080, 4600627200, -3435134976, 1702887424, -503316480, 67108864
OFFSET
1,3
COMMENTS
The length of row n of this irregular triangle t(n, k) is 2^(n-1) = A000079(n-1), n >= 1.
These polynomials P(n, y^2) = Sum_{k=0..2^(n-1)-1} t(n, k)*y^2 appear in table 2 (Tabelle 2), p. 157, of Carl Schick's book as x_n/(2^n*x*y), for n >= 1, and x_0 = x. The polynomials y_n of Tabelle 1 on p. 156 appear as y_n = -Sum_{n=0..2^(n-1)} A321369(n, k)*y^(2*k), for n >= 1, with y_0 = y, and are related to the n-th iteration of the Chebyshev polynomial -T(2, y) = 1 - 2*x^2.
Originally the polynomials y_n and x_n are defined in Schick's rare notebook as: y_n = 1 - 2*(y_{n-1})^2, for n >= 1, with y_0 = y, and x_n/(2^n*x*y) = Product_{j=1..n-1} y_j, for n >= 1, and x_0 = x. The (x_n, y_n) come from coordinates of points on the unit circle with x_n = cos(phi_n) and y_n = sin(phi_n), with some initial condition (x_0, y_0) = (x, y).
REFERENCES
Carl Schick, Trigonometrie und unterhaltsame Zahlentheorie, Bokos Druck, Zürich, 2003 (ISBN 3-9522917-0-6).
FORMULA
Row polynomials: P(n, y^2) = Product_{j=1..n-1} y_j(y^2), for n >= 1 (the empty product equals 1), where y_j(y^2) = -T^{[j]}(2, y) = -T(2^j, y), the j-th iteration of -T(2, y) = - 1 + 2*y^2, with Chebyshev's T polynomials (A053120).
Row polynomials linearized in T: P(n, y^2) = (-1)^(n-1)*(1/2^(n-2)) * Sum_{m=1..2^(n-2)} T(2*(2^(n-1) + 1 - 2*m), y), for n >= 2, and P(1, y^2) = 1. See the irregular triangle A261693(n-1, m) = 2^(n-1) + 1 - 2*m, n >= 2, 1 <= m <= 2^(n-2).
Irregular triangle: t(n, k) = [y^(2*k)] P(n, y^2), n >= 1, k = 0, 1, ..., 2^(n-1)-1.
EXAMPLE
The irregular triangle T(n, k) begins:
n\k 0 1 2 3 4 5 6 7 ...
------------------------------------------------------
1: 1
2: 1 -2
3: -1 10 -24 16
4: 1 -42 504 -2640 7040 -9984 7168 -2048
...
Row n = 5: -1 170 -8568 201552 -2687360 22573824 -127339520 502081536 -1417641984 2901606400 -4310958080 4600627200 -3435134976 1702887424 -503316480 67108864.
...
---------------------------------------------------------------------------
CROSSREFS
KEYWORD
sign,easy,tabf
AUTHOR
Wolfdieter Lang, Nov 19 2019
STATUS
approved