login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A327923 Irregular triangle read by rows: Coefficients of Schick's polynomials P(n, y^2), for n >= 1. 0
1, 1, -2, -1, 10, -24, 16, 1, -42, 504, -2640, 7040, -9984, 7168, -2048, -1, 170, -8568, 201552, -2687360, 22573824, -127339520, 502081536, -1417641984, 2901606400, -4310958080, 4600627200, -3435134976, 1702887424, -503316480, 67108864 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

The length of row n of this irregular triangle t(n, k) is 2^(n-1) = A000079(n-1), n >= 1.

These polynomials P(n, y^2) = Sum_{k=0..2^(n-1)-1} t(n, k)*y^2 appear in table 2 (Tabelle 2), p. 157, of Carl Schick's book as x_n/(2^n*x*y), for n >= 1, and  x_0 = x. The polynomials y_n of Tabelle 1 on p. 156 appear as y_n = -Sum_{n=0..2^(n-1)} A321369(n, k)*y^(2*k), for n >= 1, with y_0 = y, and are related to the n-th iteration of the Chebyshev polynomial -T(2, y) = 1 - 2*x^2.

Originally the polynomials y_n and x_n are defined in Schick's rare notebook as: y_n = 1 - 2*(y_{n-1})^2, for n >= 1, with y_0 = y, and x_n/(2^n*x*y) = Product_{j=1..n-1} y_j, for n >= 1, and x_0 = x. The (x_n, y_n) come from coordinates of points on the unit circle with x_n = cos(phi_n) and y_n = sin(phi_n), with some initial condition (x_0, y_0) = (x, y).

REFERENCES

Carl Schick, Trigonometrie und unterhaltsame Zahlentheorie, Bokos Druck, Z├╝rich, 2003 (ISBN 3-9522917-0-6).

LINKS

Table of n, a(n) for n=1..31.

FORMULA

Row polynomials: P(n, y^2) = Product_{j=1..n-1} y_j(y^2), for n >= 1 (the empty product equals 1), where y_j(y^2) = -T^{[j]}(2, y) = -T(2^j, y), the j-th iteration of -T(2, y) = - 1 + 2*y^2, with Chebyshev's T polynomials (A053120).

Row polynomials linearized in T: P(n, y^2) = (-1)^(n-1)*(1/2^(n-2)) * Sum_{m=1..2^(n-2)} T(2*(2^(n-1) + 1 - 2*m), y), for n >= 2, and  P(1, y^2) = 1. See the irregular triangle A261693(n-1, m) = 2^(n-1) + 1 - 2*m, n >= 2, 1 <= m <= 2^(n-2).

Irregular triangle: t(n, k) = [y^(2*k)] P(n, y^2), n >= 1, k = 0, 1, ..., 2^(n-1)-1.

EXAMPLE

The irregular triangle T(n, k) begins:

n\k   0    1    2      3     4      5     6      7 ...

------------------------------------------------------

1:    1

2:    1   -2

3:   -1   10  -24     16

4:    1  -42  504  -2640  7040  -9984  7168  -2048

...

Row n = 5: -1  170  -8568  201552  -2687360  22573824  -127339520 502081536  -1417641984  2901606400  -4310958080 4600627200  -3435134976  1702887424  -503316480  67108864.

...

---------------------------------------------------------------------------

CROSSREFS

Cf. A000079, A053120, A321369.

Sequence in context: A177439 A290597 A136205 * A024433 A026057 A309234

Adjacent sequences:  A327920 A327921 A327922 * A327924 A327925 A327926

KEYWORD

sign,easy,tabf

AUTHOR

Wolfdieter Lang, Nov 19 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 17 21:17 EDT 2021. Contains 348065 sequences. (Running on oeis4.)