login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A026057
a(n) = n*(n^2 + 12*n - 25)/6.
4
0, -2, 1, 10, 26, 50, 83, 126, 180, 246, 325, 418, 526, 650, 791, 950, 1128, 1326, 1545, 1786, 2050, 2338, 2651, 2990, 3356, 3750, 4173, 4626, 5110, 5626, 6175, 6758, 7376, 8030, 8721, 9450, 10218, 11026, 11875, 12766, 13700, 14678, 15701, 16770, 17886, 19050
OFFSET
0,2
COMMENTS
For n >= 4, this is dot_product(n,n-1,...2,1)*(4,5,...,n,1,2,3).
FORMULA
G.f.: x*(-2 +9*x -6*x^2)/(1-x)^4. - Colin Barker, Sep 17 2012
E.g.f.: x*(-12 +15*x +x^2)*exp(x)/6. - G. C. Greubel, Oct 30 2019
MAPLE
seq(n*(n^2+12*n-25)/6, n=0..60); # G. C. Greubel, Oct 30 2019
MATHEMATICA
CoefficientList[Series[x(-2 +9x -6x^2)/(1-x)^4, {x, 0, 60}], x] (* Vincenzo Librandi, Oct 17 2013 *)
Table[n (n^2+12n-25)/6, {n, 0, 50}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {0, -2, 1, 10}, 50] (* Harvey P. Dale, Jan 28 2020 *)
PROG
(Magma) [n*(n^2+12*n-25)/6: n in [0..60]]; // Vincenzo Librandi, Oct 17 2013
(PARI) a(n)=n*(n^2+12*n-25)/6 \\ Charles R Greathouse IV, Oct 07 2015
(Sage) [n*(n^2+12*n-25)/6 for n in (0..60)] # G. C. Greubel, Oct 30 2019
(GAP) List([0..60], n-> n*(n^2+12*n-25)/6); # G. C. Greubel, Oct 30 2019
CROSSREFS
Cf. column 3 of triangle A094415.
Sequence in context: A136205 A327923 A024433 * A309234 A071926 A133103
KEYWORD
sign,easy
EXTENSIONS
New definition from Ralf Stephan, Apr 30 2004
Edited by N. J. A. Sloane, Dec 13 2008
STATUS
approved