login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A026054
dot product (n,n-1,...2,1).(3,4,...,n,1,2).
5
13, 28, 50, 80, 119, 168, 228, 300, 385, 484, 598, 728, 875, 1040, 1224, 1428, 1653, 1900, 2170, 2464, 2783, 3128, 3500, 3900, 4329, 4788, 5278, 5800, 6355, 6944, 7568, 8228, 8925, 9660, 10434, 11248, 12103, 13000, 13940, 14924, 15953, 17028, 18150, 19320, 20539, 21808, 23128, 24500, 25925
OFFSET
3,1
FORMULA
a(n) = A023551(n+1) + 4.
From Colin Barker, Sep 17 2012: (Start)
a(n) = n*(n^2+9*n-10)/6.
G.f.: x^3*(13 - 24*x + 16*x^2 - 4*x^3)/(1-x)^4. (End)
E.g.f.: x^2*(-12 + (12+x)*exp(x))/6. - G. C. Greubel, Oct 30 2019
MAPLE
seq(n*(n^2+9*n-10)/6, n=3..60); # G. C. Greubel, Oct 30 2019
MATHEMATICA
Table[Range[n, 1, -1].RotateLeft[Range[n], 2], {n, 3, 60}] (* or *) LinearRecurrence[ {4, -6, 4, -1}, {13, 28, 50, 80}, 60] (* Harvey P. Dale, Oct 14 2012 *)
Drop[CoefficientList[Series[x(13 -24x +16x^2 -4x^3)/(1-x)^4, {x, 0, 60}], x], 1] (* Vincenzo Librandi, Oct 17 2013 *)
PROG
(Magma) [n*(n^2+9*n-10)/6: n in [3..60]]; // Vincenzo Librandi, Oct 17 2013
(PARI) vector(60, n, (n+2)*((n+2)^2+9*(n+2)-10)/6) \\ G. C. Greubel, Oct 30 2019
(Magma) [n*(n^2+9*n-10)/6: n in [0..60]]; // G. C. Greubel, Oct 30 2019
(Sage) [n*(n^2+9*n-10)/6 for n in (0..60)] # G. C. Greubel, Oct 30 2019
(GAP) List([0..60], n-> n*(n^2+9*n-10)/6); # G. C. Greubel, Oct 30 2019
CROSSREFS
Cf. A023551.
Column 2 of triangle A094415.
Essentially the same as A060488. - Vladeta Jovovic, Jun 15 2006
Sequence in context: A098847 A161453 A038597 * A281476 A001291 A018974
KEYWORD
nonn,easy
EXTENSIONS
Closed-form formula corrected by Colin Barker, Sep 17 2012
STATUS
approved