login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

dot product (n,n-1,...2,1).(3,4,...,n,1,2).
5

%I #30 Sep 08 2022 08:44:49

%S 13,28,50,80,119,168,228,300,385,484,598,728,875,1040,1224,1428,1653,

%T 1900,2170,2464,2783,3128,3500,3900,4329,4788,5278,5800,6355,6944,

%U 7568,8228,8925,9660,10434,11248,12103,13000,13940,14924,15953,17028,18150,19320,20539,21808,23128,24500,25925

%N dot product (n,n-1,...2,1).(3,4,...,n,1,2).

%H Vincenzo Librandi, <a href="/A026054/b026054.txt">Table of n, a(n) for n = 3..1000</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1).

%F a(n) = A023551(n+1) + 4.

%F From _Colin Barker_, Sep 17 2012: (Start)

%F a(n) = n*(n^2+9*n-10)/6.

%F G.f.: x^3*(13 - 24*x + 16*x^2 - 4*x^3)/(1-x)^4. (End)

%F E.g.f.: x^2*(-12 + (12+x)*exp(x))/6. - _G. C. Greubel_, Oct 30 2019

%p seq(n*(n^2+9*n-10)/6, n=3..60); # _G. C. Greubel_, Oct 30 2019

%t Table[Range[n,1,-1].RotateLeft[Range[n],2],{n,3,60}] (* or *) LinearRecurrence[ {4,-6,4,-1},{13,28,50,80},60] (* _Harvey P. Dale_, Oct 14 2012 *)

%t Drop[CoefficientList[Series[x(13 -24x +16x^2 -4x^3)/(1-x)^4, {x, 0, 60}], x], 1] (* _Vincenzo Librandi_, Oct 17 2013 *)

%o (Magma) [n*(n^2+9*n-10)/6: n in [3..60]]; // _Vincenzo Librandi_, Oct 17 2013

%o (PARI) vector(60, n, (n+2)*((n+2)^2+9*(n+2)-10)/6) \\ _G. C. Greubel_, Oct 30 2019

%o (Magma) [n*(n^2+9*n-10)/6: n in [0..60]]; // _G. C. Greubel_, Oct 30 2019

%o (Sage) [n*(n^2+9*n-10)/6 for n in (0..60)] # _G. C. Greubel_, Oct 30 2019

%o (GAP) List([0..60], n-> n*(n^2+9*n-10)/6); # _G. C. Greubel_, Oct 30 2019

%Y Cf. A023551.

%Y Column 2 of triangle A094415.

%Y Essentially the same as A060488. - _Vladeta Jovovic_, Jun 15 2006

%K nonn,easy

%O 3,1

%A _Clark Kimberling_

%E Closed-form formula corrected by _Colin Barker_, Sep 17 2012