login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A290596 Triangle read by rows. A generalization of unsigned Lah numbers, called L[3,1]. 5
1, 2, 1, 10, 10, 1, 80, 120, 24, 1, 880, 1760, 528, 44, 1, 12320, 30800, 12320, 1540, 70, 1, 209440, 628320, 314160, 52360, 3570, 102, 1, 4188800, 14660800, 8796480, 1832600, 166600, 7140, 140, 1, 96342400, 385369600, 269758720, 67439680, 7663600, 437920, 12880, 184, 1, 2504902400, 11272060800, 9017648640, 2630147520, 358656480, 25618320, 1004640, 21528, 234, 1, 72642169600, 363210848000, 326889763200, 108963254400, 17335063200, 1485862560, 72836400, 2081040, 33930, 290, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
For the general L[d,a] triangles see A286724, also for references.
This is the generalized signless Lah number triangle L[3,1], the Sheffer triangle ((1 - 3*t)^(-2/3), t/(1 - 3*t)). It is defined as transition matrix
risefac[3,1](x, n) = Sum_{m=0..n} L[3,1](n, m)*fallfac[3,1](x, m), where risefac[3,1](x, n):= Product_{0..n-1} (x + (1 + 3*j)) for n >= 1 and risefac[3,1](x, 0) := 1, and fallfac[3,1](x, n):= Product_{0..n-1} (x - (1 + 3*j)) for n >= 1 and fallfac[3,1](x, 0) := 1.
In matrix notation: L[3,1] = S1phat[3,1]*S2hat[3,1] with the unsigned scaled Stirling1 and the scaled Stirling2 generalizations A286718 and A111577 (but here with offsets 0), respectively.
The a- and z-sequences for this Sheffer matrix has e.g.f.s Ea(t) = 1 + 3*t and (Ez(t) = (1 + 3*t)*(1 - (1 + 3*t)^(-2/3))/t, respectively. That is, a = {1, 3, repeat(0)} and z(n) = A290597(n)/A038500(n+1). For the proof see the second W. Lang link. See also a W. Lang link under A006232 for Sheffer a- and z-sequences with references (in the Riordan case).
The inverse matrix T^(-1) = L^(-1)[3,1] is Sheffer ((1 + 3*t)^(-2/3), t/(1 + 3*t)). This means that T^(-1)(n, m) = (-1)^(n-m)*T(n, m).
fallfac[3,1](x, n) = Sum_{m=0..n} (-1)^(n-m)*T(n, m)*risefac[3,1](x, m), n >= 0.
REFERENCES
Steven Roman, The Umbral Calculus, Academic press, Orlando, London, 1984, p. 50.
LINKS
FORMULA
T(n, m) = L[3,1](n,m) = Sum_{k=m..n} A286718(n, k)*A111577(k+1, m+1), 0 <= m <= n.
E.g.f. of row polynomials R(n, x) := Sum_{m=0..n} T(n, m)*x^m:
(1 - 3*t)^(-2/3)*exp(x*t/(1 - 3*t)) (this is the e.g.f. for the triangle).
E.g.f. of column m: (1 - 3*t)^(-2/3)*(t/(1 - 3*t))^m/m!, m >= 0.
Three term recurrence for column entries m >= 1: T(n, m) = (n/m)*T(n-1, m-1) + 3*n*T(n-1, m) with T(n, m) = 0 for n < m, and for the column m = 0: T(n, 0) = n*Sum_{j=0}^(n-1) z(j)*T(n-1, j), from the a-sequence {1, 3 repeat(0)} and the z-sequence given above.
Four term recurrence: T(n, m) = T(n-1, m-1) + 2*(3*n - 2)*T(n-1, m) - 3*(n-1)*(3*n - 4)*T(n-2, m), n >= m >= 0, with T(0, 0) = 1, T(-1, m) = 0, T(n, -1) = 0 and T(n, m) = 0 if n < m.
Meixner type identity for (monic) row polynomials: (D_x/(1 + 3*D_x)) * R(n, x) = n*R(n-1, x), n >= 1, with R(0, x) = 1 and D_x = d/dx. That is, Sum_{k=0..n-1} (-3)^k*(D_x)^(k+1)*R(n, x) = n*R(n-1, x), n >= 1.
General recurrence for Sheffer row polynomials (see the Roman reference, p. 50, Corollary 3.7.2, rewritten for the present Sheffer notation):
R(n, x) = [(2 + x)*1 + 6*(1 + x)*D_x + 3^2*x*(D_x)^2]*R(n-1, x), n >= 1, with R(0, x) = 1.
Boas-Buck recurrence for column m (see a comment in A286724 with references): T(n, m) = (n!/(n-m))*(2 + 3*m)*Sum_{p=0..n-1-m} 3^p*T(n-1-p, m)/(n-1-p)!, for n > m >= 0, with input T(m, m) = 1.
EXAMPLE
The triangle T(n, m) begins:
n\m 0 1 2 3 4 5 6 7 8 ...
0: 1
1: 2 1
2: 10 10 1
3: 80 120 24 1
4: 880 1760 528 44 1
5: 12320 30800 12320 1540 70 1
6: 209440 628320 314160 52360 3570 102 1
7: 4188800 14660800 8796480 1832600 166600 7140 140 1
8: 96342400 385369600 269758720 67439680 7663600 437920 12880 184 1
...
n = 9: 2504902400 11272060800 9017648640 2630147520 358656480 25618320 1004640 21528 234 1,
n = 10: 72642169600 363210848000 326889763200 108963254400 17335063200 1485862560 72836400 2081040 33930 290 1.
...
Recurrence from a-sequence: T(4, 2) = 2*T(3, 1) + 3*4*T(3, 2) = 2*120 + 12*24 = 528.
Recurrence from z-sequence: T(4, 0) = 4*(z(0)*T(3, 0) + z(1)*T(3, 1) + z(2)*T(3, 2) + z(3)*T(3, 3)) = 4*(2*80 + 1*120 - (10/3)*24 + 20*1) = 880.
Four term recurrence: T(4, 2) = T(3, 1) + 2*10*T(3, 2) - 3*3*8*T(2, 2) = 120 + 20*24 - 72*1 = 528.
Meixner type identity for n = 2: (D_x - 3*(D_x)^2)*(10 + 10*x + x^2 ) = (10 + 2*x) - 3*2 = 2*(2 + x).
Sheffer recurrence for R(3, x): [(2 + x) + 6*(1 + x)*D_x + 9*x*(D_x)^2] (10 + 10*x + x^2) = (2 + x)*(10 + 10*x + x^2) + 6*(1 + x)*(10 +2*x) + 9*2*x = 80 + 120*x + 24*x^2 + x^3 = R(3, x).
Boas-Buck recurrence for column m = 2 with n = 4: T(4, 2) = (4!*8/2)*(1*24/3! + 3*1/2!) = 528.
CROSSREFS
Cf. A008544 (column m=0), A038500, A111577, A271703 L[1,0], A286718, A286724 L[2,1], A290597, A290598 L[3,2].
Sequence in context: A279007 A163914 A167883 * A151504 A151507 A151363
KEYWORD
nonn,easy,tabl
AUTHOR
Wolfdieter Lang, Sep 13 2017
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 29 06:15 EDT 2024. Contains 371265 sequences. (Running on oeis4.)