The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A290595 Triangle T(n, k) read by rows: row n gives the coefficients of the numerator polynomials of the o.g.f. of the (n+1)-th diagonal of the Sheffer triangle A286718 (|S1hat[3,1]| generalized Stirling 1), for n >= 0. 0
 1, 1, 2, 4, 19, 4, 28, 222, 147, 8, 280, 3194, 4128, 887, 16, 3640, 55024, 113566, 52538, 4835, 32, 58240, 1107336, 3268788, 2562676, 555684, 25167, 64, 1106560, 25526192, 100544412, 117517960, 45415640, 5301150, 128203, 128, 24344320, 663605680, 3325767376, 5352311764, 3189383200, 695714590, 47537320, 646519, 256, 608608000, 19213911360, 118361719296, 248493947496, 208996478388, 72479948400, 9696965250, 410038434, 3245139, 512 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS The ordinary generating function (o.g.f.) of the (n+1)-th diagonal sequence of the Sheffer triangle A286718 = ((1 - 3*x)^(-1/3), -log(1 - 3*x)/3), called |S1hat[3,1]|, is  GD(3,1;n,x) = P(n, x)/(1 - x)^(2*n+1), with the row polynomials P(n, x) = Sum_{k=0..n} T(n, k)*x^k, n >= 0. For the two parameter Sheffer case |S1hat[d,a]| = ((1 - d*x)^{-a/d}, -log(1 - d*x)/d) (with gcd(d,a) = 1, d >=0, a >= 0, and for d = 1 one takes a = 0) the e.g.f. ED(t, x) of the o.g.f.s {GD(d,a;n,x)}_{n>=0} of the diagonal sequences with elements D(d,a;n,m) = |S1hat[d,a]|(n+m, m)  (n=0 for the main diagonal) is of interest. It can be computed via Lagrange's theorem. For the special Sheffer case (1, f(x)) this has been done by P. Bala (see the link). This method can be generalized for Sheffer (g(x), f(x)), as shown in the W. Lang link. LINKS Wolfdieter Lang, On Generating functions of Diagonal Sequences of Sheffer and Riordan Number Triangles, arXiv:1708.01421 [math.NT], August 2017. FORMULA T(n, k) = [x^k] P(n, x) with the numerator polynomials of the o.g.f. GD(n, x) = P(n, x)/(1-x)^(2*n+1) of the (n+1)-th diagonal sequence of the triangle A286718. See a comment above. EXAMPLE The triangle T(n, k) begins: n\k        0        1         2         3        4       5      6   7 ... 0:         1 1:         1        2 2:         4       19         4 3:        28      222       147         8 4:       280     3194      4128       887       16 5:      3640    55024    113566     52538     4835      32 6:     58240  1107336   3268788   2562676   555684   25167      6 7:   1106560 25526192 100544412 117517960 45415640 5301150 128203 128 ... n = 8: 24344320 663605680 3325767376 5352311764 3189383200 695714590 47537320 646519 256, n = 9: 608608000 19213911360 118361719296 248493947496 208996478388 72479948400 9696965250 410038434 3245139 512. n = 3: The o.g.f. of the 4th diagonal sequence of A286718, [28, 418, 2485, ...] = A024213(n+1), n >= 0, is P(3, x) = (28 + 222*x + 147*x^2 + 8*x^3)/(1 - 3*x)^7. CROSSREFS Cf. A024213, A286718, A288875 ([2,1] case). Sequence in context: A009667 A009508 A275000 * A009418 A273553 A153691 Adjacent sequences:  A290592 A290593 A290594 * A290596 A290597 A290598 KEYWORD nonn,tabl AUTHOR Wolfdieter Lang, Aug 08 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 29 14:50 EST 2021. Contains 349416 sequences. (Running on oeis4.)