login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A167883 Triangle read by rows: row n gives coefficients of expansion of polynomial p(k,n) in powers of k, defined by p(k, 0) = 1, p(k, 1) = 1+2*k; for n>1, p(k,n) = If[Mod[n, 2] == 0, (1 + 2*k)*p(k, n - 1) + n*Binomial[n + 1, n - 1]*k*(k + 1)*p(k, n - 2), (1 + 2*k)*(1 + 3*(p(k, n - 1) - 1))]. 1
1, 1, 2, 1, 10, 10, 1, 32, 90, 60, 1, 74, 594, 1040, 520, 1, 224, 2226, 6684, 7800, 3120, 1, 352, 12124, 95304, 227052, 215280, 71760, 1, 1058, 38484, 358656, 1252980, 2008152, 1506960, 430560, 1, 1348, 142264, 4028712, 32909556, 97352640 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Row sums are {1, 3, 21, 183, 2229, 20055, 621873, 5596851, 374989401, 3374904603, 422613054909, ...}

The remarkable thing about these polynomials is that their infinite sums are a symmetrical triangle.

The old definition was "Coefficients of a recursive polynomial:p(k,n)=If[Mod[n, 2] == 0, (1 + 2*k)*p(k, n - 1) + n*Binomial[n + 1, n - 1]*k*(k + 1)*p(k, n - 2), (1 + 2*k)*(1 + 3*(p(k, n - 1) - 1))] ( correction with cubic term in the infinite sum)."

LINKS

G. C. Greubel, Table of n, a(n) for the first 40 rows

FORMULA

p(k,0) = 1; p(k,1) = 1+2*k; p(k,n) = If[Mod[n, 2] == 0, (1 + 2*k)*p(k, n - 1) + n*Binomial[n + 1, n - 1]*k*(k + 1)*p(k, n - 2), (1 + 2*k)*(1 + 3*(p(k, n - 1) - 1))].

EXAMPLE

The triangle begins:

{1},

{1, 2},

{1, 10, 10},

{1, 32, 90, 60},

{1, 74, 594, 1040, 520},

{1, 224, 2226, 6684, 7800, 3120},

{1, 352, 12124, 95304, 227052, 215280, 71760},

{1, 1058, 38484, 358656, 1252980, 2008152, 1506960, 430560},

{1, 1348, 142264, 4028712, 32909556, 97352640, 132914880, 86112000, 21528000},

{1, 4046, 434880, 12939720, 122900940, 489515256, 982860480, 1055825280, 581256000, 129168000},

{1, 4598, 1184922, 92796080, 2442817180, 21051364536, 73606098792, 129668682240, 123157690560, 60493680000, 12098736000},

...

The infinite sum triangle is:

Table[Sum[p[k, n]*x^k, {k, 0, Infinity}], {n, 0, 10}];

{1},

{1, 1},

{-1, -18, -1},

{1, 179, 179, 1}

{-1, -2224, -8030, -2224, -1},

{1, 20049, 167150, 167150, 20049, 1},

{-1, -5596844, -145462469, -524422080, -360876091, -48653716, 1},

{1, 5596843, 194116185, 885298171, 885298171, 194116185, 5596843, 1},

{-1, -374989392, -25339790572, -207966886768, -400645626534, -207966886768, -25339790572, -374989392, -1}

MATHEMATICA

Clear[p, x, n, k, a]

p[k, 0] := 1; p[k, 1] := 1 + 2*k; p[k_, n_] := If[Mod[n, 2] == 0, (1 + 2*k)*p[k, n - 1] + n*Binomial[n + 1, n - 1]*k*(k + 1)*p[k, n - 2], (1 + 2*k)*(1 + 3*(p[k, n - 1] - 1))];

Table[CoefficientList[ExpandAll[p[k, n]], k], {n, 0, 10}]; Flatten[%]

CROSSREFS

Sequence in context: A244582 A279007 A163914 * A151504 A151507 A151363

Adjacent sequences:  A167880 A167881 A167882 * A167884 A167885 A167886

KEYWORD

nonn

AUTHOR

Roger L. Bagula, Nov 14 2009

EXTENSIONS

Edited by _G. C. Gruebel_ and N. J. A. Sloane, Jul 01 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 8 06:50 EST 2016. Contains 278902 sequences.