login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A167882
Number of reduced words of length n in Coxeter group on 4 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I.
7
1, 4, 12, 36, 108, 324, 972, 2916, 8748, 26244, 78732, 236196, 708588, 2125764, 6377292, 19131876, 57395622, 172186848, 516560496, 1549681344, 4649043600, 13947129504, 41841384624, 125524142208, 376572391632, 1129717069920
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A003946, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,-3).
FORMULA
G.f.: (t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1) / ( 3*t^16 - 2*t^15 - 2*t^14 - 2*t^13 - 2*t^12 - 2*t^11 - 2*t^10 - 2*t^9 - 2*t^8 - 2*t^7 - 2*t^6 - 2*t^5 - 2*t^4 - 2*t^3 - 2*t^2 - 2*t + 1).
From G. C. Greubel, Jan 17 2023: (Start)
a(n) = 2*Sum_{j=1..15} a(n-j) - 3*a(n-16).
G.f.: (1+x)*(1-x^16)/(1 - 3*x + 5*x^16 - 3*x^17). (End)
MATHEMATICA
CoefficientList[Series[(1+t)*(1-t^16)/(1-3*t+5*t^16-3*t^17), {t, 0, 50}], t] (* G. C. Greubel, Jun 29 2016; Dec 06 2024 *)
coxG[{16, 3, -2}] (* The coxG program is at A169452 *) (* G. C. Greubel, Dec 06 2024 *)
PROG
(Magma)
R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x)*(1-x^16)/(1-3*x+5*x^16-3*x^17) )); // G. C. Greubel, Dec 06 2024
(SageMath)
def A167882_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( (1+x)*(1-x^16)/(1-3*x+5*x^16-3*x^17) ).list()
print(A167882_list(40)) # G. C. Greubel, Dec 06 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved