login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A168681
Number of reduced words of length n in Coxeter group on 4 generators S_i with relations (S_i)^2 = (S_i S_j)^17 = I.
1
1, 4, 12, 36, 108, 324, 972, 2916, 8748, 26244, 78732, 236196, 708588, 2125764, 6377292, 19131876, 57395628, 172186878, 516560616, 1549681800, 4649045256, 13947135336, 41841404712, 125524210248, 376572619080, 1129717822248
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A003946, although the two sequences are eventually different.
First disagreement at index 17: a(17) = 172186878, A003946(17) = 172186884. - Klaus Brockhaus, Mar 30 2011
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,-3).
FORMULA
G.f.: (t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(3*t^17 - 2*t^16 - 2*t^15 - 2*t^14 - 2*t^13 - 2*t^12 - 2*t^11 - 2*t^10 - 2*t^9 - 2*t^8 - 2*t^7 - 2*t^6 - 2*t^5 - 2*t^4 - 2*t^3 - 2*t^2 - 2*t + 1).
G.f.: (1+t)*(1-t^17)/(1 -3*t +5*t^17 -3*t^18). - G. C. Greubel, Feb 22 2021
MATHEMATICA
CoefficientList[Series[(1+t)*(1-t^17)/(1 -3*t +5*t^17 -3*t^18), {t, 0, 40}], t] (* G. C. Greubel, Aug 03 2016, Feb 22 2021 *)
coxG[{17, 3, -2, 40}] (* The coxG program is at A169452 *) (* G. C. Greubel, Feb 22 2021 *)
PROG
(Magma)
R<t>:=PowerSeriesRing(Integers(), 40);
Coefficients(R!( (1+t)*(1-t^17)/(1 -3*t +5*t^17 -3*t^18) )); // G. C. Greubel, Feb 22 2021
(Sage)
def A168681_list(prec):
P.<t> = PowerSeriesRing(ZZ, prec)
return P( (1+t)*(1-t^17)/(1 -3*t +5*t^17 -3*t^18) ).list()
A168681_list(40) # G. C. Greubel, Feb 22 2021
CROSSREFS
Cf. A003946 (G.f.: (1+x)/(1-3*x)).
Sequence in context: A167105 A167649 A167882 * A168729 A168777 A168825
KEYWORD
nonn,easy
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved