login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A168682
Number of reduced words of length n in Coxeter group on 5 generators S_i with relations (S_i)^2 = (S_i S_j)^17 = I.
1
1, 5, 20, 80, 320, 1280, 5120, 20480, 81920, 327680, 1310720, 5242880, 20971520, 83886080, 335544320, 1342177280, 5368709120, 21474836470, 85899345840, 343597383210, 1374389532240, 5497558126560, 21990232496640, 87960929948160
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A003947, although the two sequences are eventually different.
First disagreement at index 17: a(17) = 21474836470, A003947(17) = 21474836480. - Klaus Brockhaus, Mar 30 2011
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,-6).
FORMULA
G.f.: (t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1) / (6*t^17 - 3*t^16 - 3*t^15 - 3*t^14 - 3*t^13 - 3*t^12 - 3*t^11 - 3*t^10 - 3*t^9 - 3*t^8 - 3*t^7 - 3*t^6 - 3*t^5 - 3*t^4 - 3*t^3 - 3*t^2 - 3*t + 1).
G.f.: (1+t)*(1-t^17)/(1 -4*t +9*t^17 -6*t^18). - G. C. Greubel, Feb 22 2021
MATHEMATICA
CoefficientList[Series[(1+t)*(1-t^17)/(1 -4*t +9*t^17 -6*t^18), {t, 0, 40}], t] (* G. C. Greubel, Aug 03 2016, Feb 22 2021 *)
coxG[{17, 6, -3, 40}] (* The coxG program is at A169452 *) (* G. C. Greubel, Feb 22 2021 *)
PROG
(PARI) Vec(Pol(vector(18, i, if(i<2||i>17, 1, 2))) / Pol(vector(18, i, if(i<2, 6, i>17, 1, -3)))+O(x^99)) \\ Charles R Greathouse IV, Aug 03 2016
(Magma)
R<t>:=PowerSeriesRing(Integers(), 40);
Coefficients(R!( (1+t)*(1-t^17)/(1 -4*t +9*t^17 -6*t^18) )); // G. C. Greubel, Feb 22 2021
(Sage)
def A168682_list(prec):
P.<t> = PowerSeriesRing(ZZ, prec)
return P( (1+t)*(1-t^17)/(1 -4*t +9*t^17 -6*t^18) ).list()
A168682_list(40) # G. C. Greubel, Feb 22 2021
CROSSREFS
Cf. A003947 (G.f.: (1+x)/(1-4*x)).
Sequence in context: A167650 A269696 A167896 * A168730 A168778 A168826
KEYWORD
nonn,easy
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved