login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of (1 - 2*x - sqrt(1 - 8*x + 8*x^2))/(2*x*(1-x)).
3

%I #44 Sep 08 2022 08:45:51

%S 1,3,11,47,223,1135,6063,33535,190399,1103231,6497407,38779647,

%T 234043647,1425869567,8757326591,54163521535,337060285439,

%U 2108928587775,13258969458687,83720567447551,530692157964287,3375836610256895

%N Expansion of (1 - 2*x - sqrt(1 - 8*x + 8*x^2))/(2*x*(1-x)).

%C Binomial transform of large Schroeder numbers A006318.

%C Hankel transform is 2^binomial(n+1,2).

%C Series reversion of (-1)^(n+1)*A001333(n). - _Vladimir Reshetnikov_, Nov 08 2015

%C Series reversion of x + 3*x^2 + 11*x^3 + ... is x - 3*x^2 + 7*x^3 - ... - _Michael Somos_, Nov 09 2015

%H Vincenzo Librandi, <a href="/A174347/b174347.txt">Table of n, a(n) for n = 0..200</a>

%H Paul Barry, <a href="http://arxiv.org/abs/1311.2292">Laurent Biorthogonal Polynomials and Riordan Arrays</a>, arXiv preprint arXiv:1311.2292 [math.CA], 2013.

%H Aoife Hennessy, <a href="http://repository.wit.ie/1693/1/AoifeThesis.pdf">A Study of Riordan Arrays with Applications to Continued Fractions, Orthogonal Polynomials and Lattice Paths</a>, Ph. D. Thesis, Waterford Institute of Technology, Oct. 2011.

%F G.f.: 1/(1-x-2x/(1-x/(1-x-2x/(1-x/(1-x-2x/(1-x/(1-... (continued fraction);

%F a(n) = Sum_{k=0..n} binomial(n,k)*A006318(k).

%F D-finite with recurrence: (n+1)*a(n) + 3*(1-3n)*a(n-1) + 4*(4n-5)*a(n-2) + 8(2-n)*a(n-3) = 0. - _R. J. Mathar_, Dec 08 2011

%F a(n) ~ 2*sqrt(2*sqrt(2)-2)*(4+2*sqrt(2))^n/(sqrt(Pi)*n^(3/2)). - _Vaclav Kotesovec_, Oct 20 2012

%F 0 = a(n)*(+64*a(n+1) - 224*a(n+2) + 192*a(n+3) - 32*a(n+4)) + a(n+1)*(-32*a(n+1) + 208*a(n+2) - 260*a(n+3) + 52*a(n+4)) + a(n+2)*(-12*a(n+2) + 61*a(n+3) - 21*a(n+4)) + a(n+3)*(+3*a(n+3) + a(n+4)) for all n>=0. - _Michael Somos_, Nov 09 2015

%e G.f. = 1 + 3*x + 11*x^2 + 47*x^3 + 223*x^4 + 1135*x^5 + 6063*x^6 + 33535*x^7 + ...

%t CoefficientList[Series[(1-2*x-Sqrt[1-8*x+8*x^2])/(2*x*(1-x)), {x, 0, 20}], x] (* _Vaclav Kotesovec_, Oct 20 2012 *)

%o (PARI) x='x+O('x^35); Vec((1-2*x-sqrt(1-8*x+8*x^2))/(2*x*(1-x))) \\ _Altug Alkan_, Nov 08 2015

%o (Magma) m:=35; R<x>:=PowerSeriesRing(Rationals(), m); Coefficients(R!((1-2*x-Sqrt(1-8*x+8*x^2))/(2*x*(1-x)))); // _G. C. Greubel_, Sep 22 2018

%Y Cf. A006318, A001333.

%K easy,nonn

%O 0,2

%A _Paul Barry_, Mar 16 2010